纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 55-62.doi: 10.13475/j.fzxb.20230806001

• 纺织工程 • 上一篇    下一篇

针迹类型对表面肌电用刺绣型织物电极性能影响

王建萍1,2,3, 邵熠萌1, 杨雅岚1,4(), 何苑溪1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
    3.同济大学 上海国际设计创新研究院, 上海 200092
    4.河南工程学院 服装学院, 河南 郑州 451191
  • 收稿日期:2023-08-28 修回日期:2024-03-26 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 杨雅岚(1988—),女,讲师,博士。主要研究方向为电磁屏蔽及可穿戴电子织物。E-mail:yangyalan821@126.com
  • 作者简介:王建萍(1962—),女,教授,博士。主要研究方向为服装先进制造。
  • 基金资助:
    上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100);上海高校本科重点教改项目(SJG23-06);纺织之光高等教育教学改革项目(2021BKJGLX123)

Influences of stitch types on performance of embroidered fabric electrodes for surface electromyography

WANG Jianping1,2,3, SHAO Yimeng1, YANG Yalan1,4(), HE Yuanxi1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
    3. Shanghai International College of Design and Innovation, Tongji University, Shanghai 200092, China
    4. College of Fashion, Henan Institute of Engineering, Zhengzhou, Henan 451191, China
  • Received:2023-08-28 Revised:2024-03-26 Published:2024-07-15 Online:2024-07-15

摘要:

为设计与开发高性能的表面肌电用刺绣型织物电极,优化其工艺参数,采用镀银纱线作为导电刺绣线,以弹性针织面料作为刺绣基底织物,制备了4种不同针迹类型的刺绣电极,测试了其皮肤-电极阻抗,并在行走和慢跑2种状态下使用刺绣电极与Ag/AgCl凝胶电极同步采集了小腿腓肠肌表面肌电信号,采用时域、频域及相关函数分析了刺绣电极与凝胶电极采集的肌电信号拟合性能。结果表明:针迹类型对刺绣电极的皮肤-电极阻抗有显著影响,其中放射状刺绣电极的皮肤-电极阻抗相对最小,而圆环状刺绣电极的阻抗最大;4种不同针迹类型的刺绣电极与Ag/AgCl凝胶电极的表面肌电信号采集效果较为相似,验证了刺绣电极的可行性;放射状刺绣电极的表面肌电信号拟合性能较优,更适合用于肌电信号监测。

关键词: 织物电极, 刺绣, 表面肌电信号, 针迹类型, 皮肤-电极阻抗

Abstract:

Objective The aim of this study is to develop high-performance embroidered fabric electrodes for surface electromyography (sEMG) and optimize their process parameters. Four embroidered fabric electrodes with different stitch types were designed and produced to investigate the influence of stitch types on their conductivity properties and sEMG signal fitting performance, ultimately determining the optimal stitch type.

Method Fabric electrodes were produced using embroidery techniques by virture of the advantage of tailored fiber placement in embroidery. Silver-plated yarn, known for its high conductivity, served as the conductive embroidery thread, and elastic knitted structure were used as the substrate to improve the fit of the electrodes to the skin. Four embroidered fabric electrodes with different stitch types, i.e., tabby-stitch, box-stitch, annular-stitch and radial-stitch, were designed and produced. Skin-electrode impedance testing was conducted for each embroidered fabric electrode. In the states of walking and jogging, embroidered fabric electrodes and Ag/AgCl electrodes were aolopted to synchronously collect sEMG signal of the medial side of calf gastrocnemius muscle, and sEMG signal fitting performance of embroidered fabric electrodes and Ag/AgCl electrodes was evaluated in time-domain, frequency-domain and by correlation function analysis.

Results 1) Through skin-electrode impedance testing, it was found that direct embroidery on elastic knitted fabric tends to cause wrinkling in the fabric, resulting in deformation of the embroidered fabric electrodes. Placing non-adhesive interlinings such as paper interlining or cloth interlining on the bottom layer of elastic knitted fabrics cannot effectively solve this problem. However, using hydrosol double-sided fuse interlinings to synthesize elastic knitted fabrics and paper interlinings into fabric substrate for embroidery can effectively prevent fabric wrinkling and electrodes deformation. 2) Through skin-electrode impedance testing, it was found that stitch types significantly affect the skin-electrode impedance of embroidered fabric electrodes. During the test, the order of skin-electrode impedance was found to be annular-stitch electrode > box-stitch electrode > tabby-stitch electrode > radial-stitch electrode. The conductivity performance of embroidered fabric electrode with radial stitch is optimal. 3) In the time-domain comparison diagram, sEMG signal of each embroidered fabric electrode was basically consistent with that of Ag/AgCl electrodes. The time-domain indices extracted include root mean square (RMS) and average rectifying value (ARV), while frequency-domain indices encompassed mean power frequency (MPF) and median frequency (MF). RMS, ARV, MPF and MF of each embroidered fabric electrode were close to those of Ag/AgCl electrodes. Therefore, the sEMG acquisition effect of embroidered fabric electrodes were similar to that of Ag/AgCl electrodes. 4) The time-domain and frequency-domain characteristics of the sEMG signals collected by embroidered fabric electrode with radial stitch and Ag/AgCl electrodes were similar. Moreover, the ratio of information entropy of sEMG signal collected by embroidered fabric electrode with radial stitch and Ag/AgCl electrodes was the closest to 1, and the correlation coefficient between them was higher than 0.455 in the jogging state. So, it is believed that the sEMG signal fitting performance of the embroidered fabric electrode with radial stitch was better, and it was more suitable for sEMG monitoring. This result was related to the smaller skin-electrode impedance of embroidered fabric electrode with radial stitch, as generally speaking, the smaller the skin-electrode impedance of the electrode, the weaker the attenuation of the sEMG signal.

Conclusion The sEMG signal acquisition effect of four embroidered fabric electrodes with different stitch types are similar to that of Ag/AgCl electrodes, which verifies the feasibility of embroidered fabric electrodes. The type of stitch affects the skin-electrode impedance and sEMG signal fitting performance of embroidered fabric electrodes. The embroidered fabric electrode with radial stitch has the smallest skin-electrode impedance and demonstrated optimal sEMG signal fitting performance, indicating that optimizing stitch can improve the performance of embroidered fabric electrodes.

Key words: fabric electrode, embroidery, surface electromyography signal, stitch type, skin-electrode impedance

中图分类号: 

  • TS101.8

图1

刺绣基底织物的结构"

图2

刺绣型织物电极"

图3

皮肤-电极阻抗测试"

表1

受试者基本数据"

统计值 小腿长 膝盖围 膝盖下围 小腿肚围 脚踝围
最大值 42.8 38.0 33.2 35.0 21.1
最小值 37.3 33.3 30.7 31.4 18.6
平均值 39.0 35.7 31.7 33.0 19.7
标准差 2.0 1.6 0.8 1.3 0.9

图4

刺绣电极的皮肤-电极阻抗"

图5

刺绣电极与Ag/AgCl凝胶电极采集的表面肌电信号时域对比"

图6

刺绣电极与Ag/AgCl凝胶电极采集的表面肌电信号的提取指标数据统计"

表2

肌电信号相关函数分析结果"

电极名称 行走 慢跑
时域信息
熵之比
频域信息
熵之比
相关
系数r
显著性P 时域信息
熵之比
频域信息
熵之比
相关
系数r
显著性P
平纹状刺绣电极 1.00 1.05 0.389 0 1.04 1.03 0.427 0
波纹状刺绣电极 1.01 1.03 0.396 0 1.04 1.09 0.456 0
圆环状刺绣电极 1.02 1.07 0.356 0 1.06 1.06 0.440 0
放射状刺绣电极 1.00 1.03 0.422 0 1.03 1.02 0.478 0
[1] 张佳慧. 织物传感技术智能腿套制备及肌肉疲劳预测[D]. 上海: 东华大学, 2020: 2-16.
ZHANG Jiahui. Smart leggings knitting muscle fatigue prediction based on fabric sensing[D]. Shanghai: Donghua University, 2020: 2-16.
[2] 冯源, 周金利, 杨红英, 等. 刺绣技术在智能纺织品中的应用进展[J]. 现代纺织技术, 2023, 31(1): 82-91.
doi: 10.19398/j.att.202204021
FENG Yuan, ZHOU Jinli, YANG Hongying, et al. Application progress of embroidery technology in smart textiles[J]. Advanced Textile Technology, 2023, 31(1): 82-91.
doi: 10.19398/j.att.202204021
[3] 程宁波, 吴志明, 柯思成. 服装压力对男子骑行运动中肌肉疲劳的影响[J]. 纺织学报, 2019, 40(8): 130-135.
CHENG Ningbo, WU Zhiming, KE Sicheng. Influence of clothing pressure on muscle fatigue during men's cycling[J]. Journal of Textile Research, 2019, 40(8): 130-135.
[4] OZTURK O. Muscular activity monitoring and surface electromyography (sEMG) with graphene textiles[C]// YAPICI M K. 2019 IEEE Sensors. Canada: IEEE, 2019: 1-4.
[5] DAS P S, PARK J Y. A flexible touch sensor based on conductive elastomer for biopotential monitoring applications[J]. Biomedical Signal Processing and Control, 2017, 33: 72-82.
[6] 董科, 李思明, 吴官正, 等. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(1): 56-62,68.
DONG Ke, LI Siming, WU Guanzheng, et al. Preparation and properties of carbon fiber / polyester electrocardiogram monitoring embroidery electrode[J]. Journal of Textile Research, 2020, 41(1): 56-62,68.
[7] OZTURK O, YAPICI M K. Surface electromyography with wearable graphene textiles[J]. IEEE Sensors Journal, 2021, 21(13): 14397-14406.
[8] KIM H, RHO S, HAN S, et al. Fabrication of textile-based dry electrode and analysis of its surface EMG signal for applying smart wear[J]. Polymers, 2022. DOI:10.3390/polym14773641.
[9] 石峻铭, 孟粉叶, 胡吉永. 长时连续稳定体表肌电监测织物干电极的研究进展[J]. 现代纺织技术, 2023, 31(3): 263-273.
SHI Junming, MENG Fenye, HU Jiyong. Research progress of fabric dry electrode for long time continuous and stable EMG monitoring on human skin[J]. Advanced Textile Technology, 2023, 31(3): 263-273.
[10] GONCU B G. Design of a wearable pain management system with embroidered TENS electrodes[J]. International Journal of Clothing Science and Technology, 2018, 30(1): 38-48.
[11] KANNAIAN T, NEELAVENI R, THILAGAVATHI G. Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals[J]. Journal of Industrial Textiles, 2013, 42(3): 303-318.
[12] ISMAR E, TAO X, RAULT F, et al. Towards embroidered circuit board from conductive yarns for e-textiles[J]. IEEE Access, 2020, 8: 155329-155336.
[13] KRASTEVA V, PAPAZOV S. Estimation of current density distribution under electrodes for external defibrillation[J]. Biomedical Engineering Online, 2002. DOI:10.1186/1475-925x-1-7.
[14] KIM S, LEE S, JEONG W. EMG measurement with textile-based electrodes in different electrode sizes and clothing pressures for smart clothing design optimiz-ation[J]. Polymers, 2020, 12(10): 2406.
[15] MESIN L. Crosstalk in surface electromyogram: literature review and some insights[J]. Physical and Engineering Sciences in Medicine, 2020, 43(2): 481-492.
doi: 10.1007/s13246-020-00868-1 pmid: 32358663
[16] LOGOTHETIS I, FERNANDEZ-G R, TROYNIKOV O, et al. Embroidered electrodes for bioelectrical impedance analysis: impact of surface area and stitch parameters[J]. Measurement Science and Technology, 2019, 30(11): 115103.
[17] KIM H, KIM S, LIM D, et al. Development and characterization of embroidery-based textile electrodes for surface EMG detection[J]. Sensors, 2022, 22(13): 4746.
[18] ANKHILI A, ZAMAN S U, TAO X, et al. How to connect conductive flexible textile tracks to skin electrocardiography electrodes and protect them against washing[J]. IEEE Sensors Journal, 2019, 19(24): 11995-12002.
[19] 赵典. 不同运动表面跑步对人体下肢生物力学特征的影响[D]. 武汉: 武汉体育学院, 2021: 40-46.
ZHAO Dian. The effect of running on the biomechanics of lower limbs of human body[D]. Wuhan: Wuhan Institute of Physical Education, 2021: 40-46.
[20] 张佳慧, 王建萍. 织物传感智能腿套的肌电信号拟合性能研究[J]. 丝绸, 2020, 57(8): 29-34.
ZHANG Jiahui, WANG Jianping. sEMG signal fitting performance of smart leggings with fabric sensing[J]. Journal of Silk, 2020, 57(8): 29-34.
[21] WEBBER C L, SCHMIDT M A, WALSH J M. Influence of isometric loading on biceps EMG dynamics as assessed by linear and nonlinear tools[J]. Journal of Applied Physiology, 1995, 78(3): 814-822.
pmid: 7775324
[22] 周嘉琳, 杨国伟, 孙超, 等. 肌电技术在日常运动训练疲劳检测中的应用[J]. 毛纺科技, 2023, 51(6): 46-54.
ZHOU Jialin, YANG Guowei, SUN Chao, et al. Application of electromyography in fatigue detection of daily sports training[J]. Wool Textile Journal, 2023, 51(6): 46-54.
[23] 张亚亚. 刺绣型织物基导体带电学性能的影响因素及作用机理[D]. 上海: 东华大学, 2022: 25.
ZHANG Yaya. Influence factors and mechanism of electrical performance of embroidery fabric-based conductor strips[D]. Shanghai: Donghua University, 2022: 25.
[1] 陈莹, 沈娜弟, 张露. 全纤维电容式传感器的结构设计及其性能[J]. 纺织学报, 2024, 45(05): 43-50.
[2] 姚琳涵, 张颖, 姚岚, 郑晓萍, 魏文达, 刘成霞. 基于多尺度纹理合成的刺绣风格迁移模型[J]. 纺织学报, 2023, 44(09): 84-90.
[3] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[4] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[5] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(01): 56-62.
[6] 董科, 张玲, 范佳璇, 李梦婕, 梅琳, 肖学良. 织物电极监测心电信号与穿戴压力作用机制分析[J]. 纺织学报, 2019, 40(09): 75-82.
[7] 郭惠昕, 张干清. 刺绣机针杆机构运动精度的灵敏度分析[J]. 纺织学报, 2019, 40(01): 142-146.
[8] 王晓予 向军 潘如如 梁惠娥 高卫东. 服饰刺绣图案的自动提取与色块分割[J]. 纺织学报, 2017, 38(09): 120-126.
[9] 卢新燕 童友军. 大岞惠安女服饰刺绣纹样及其寓意[J]. 纺织学报, 2015, 36(08): 121-126.
[10] 刘运娟, 陈东生. 客家传统服饰刺绣图案[J]. 纺织学报, 2012, 33(7): 114-117.
[11] 戴璐. 细节设计在服装造型中的应用[J]. 纺织学报, 2012, 33(7): 118-122.
[12] 刘良宝;王新;赵罘;肖科峰. 电脑刺绣机刺布机构结构优化设计[J]. 纺织学报, 2011, 32(5): 126-129.
[13] 亓延;范雪荣;崔荣荣. 解析近代齐鲁民间服饰刺绣纹样中的民俗内涵[J]. 纺织学报, 2011, 32(3): 110-115.
[14] 林建龙;罗智文;张力. 电脑刺绣机针杆机构位置精度分析[J]. 纺织学报, 2010, 31(7): 131-134.
[15] 陆丽君. 宁波金银彩绣的特色与传承[J]. 纺织学报, 2010, 31(1): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!