纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 86-93.doi: 10.13475/j.fzxb.20230304501

• 纺织工程 • 上一篇    下一篇

基于U-Net卷积神经网络的织物压力传感阵列串扰解决方法

王小东, 陈俊鹏, 裴泽光()   

  1. 东华大学 机械工程学院, 上海 201620
  • 收稿日期:2023-03-20 修回日期:2024-01-20 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 裴泽光(1982—),男,教授,博士。研究方向为纺织工程与纺织机械。E-mail: zgpei@dhu.edu.cn
  • 作者简介:王小东(1997—),男,硕士生。主要研究方向为柔性压力传感器设计。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232023Y-01)

Method for solving crosstalk in fabric pressure sensor array based on U-Net convolutional neural network

WANG Xiaodong, CHEN Junpeng, PEI Zeguang()   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2023-03-20 Revised:2024-01-20 Published:2024-07-15 Online:2024-07-15

摘要:

为解决压阻式柔性压力传感阵列中存在的异常传感单元与串扰现象导致采集到的压力数据不准确的问题,构建了具有32×32个传感单元的压阻式柔性织物压力传感阵列系统,对传感单元检测值出现异常的原因进行了分析,采用中值滤波算法对系统获取的压力分布云图中的异常值进行处理;针对串扰现象,构建了U-Net卷积神经网络模型,采用机器学习方法对织物压力传感阵列系统生成的压力云图进行修正,设计了模型输入、输出数据集的采集方法。结果表明,经中值滤波算法处理后的压力云图的峰值信噪比处于30~40 dB之间,反映出中值滤波算法对异常值处理的效果较为理想;U-Net卷积神经网络模型训练过程中的均方根误差最终达到7.1,表明模型获得了较好的训练效果,通过与无串扰效应的柔性压力传感阵列采集的压力云图进行对比,表明U-Net模型能够有效消除串扰现象对织物压力传感阵列压力云图显示结果的影响。

关键词: 织物压力传感阵列, 中值滤波, U-Net卷积神经网络, 足底压力监测, 串扰

Abstract:

Objective Flexible fabric pressure sensor arrays have great application potential in detecting and distinguishing the physical state of the elderly, because this technology offers high detection sensitivity, wide detection range and simple fabrication process. However, in the process of fabricating the piezoresistive flexible pressure sensor array, it is difficult to avoid the occurrence of abnormal sensing units and crosstalk, which results in the collection of inaccurate pressure data. In particular, the crosstalk phenomenon of the flexible pressure sensor array will cause serious distortion of the pressure contour generated based on the collected pressure data. The aim of this work is to devise a method for solving the problems mentioned above.

Method In order to solve these problems, a piezoresistive flexible fabric pressure sensor array system with 32×32 sensing units is first constructed. The causes for the detected abnormal values of the sensing units are then analyzed and the median filtering algorithm is adopted to process the abnormal values in the pressure distribution contour obtained by the system. Aimed at solving the crosstalk phenomenon, a U-Net convolutional neural network model is constructed and the pressure contour generated by the fabric pressure sensor array system is corrected by this machine learning method. In addition, the method for collecting the input and output data set for the model is designed.

Results The results show that the peak signal-to-noise ratio is taken as the benchmark to evaluate the quality of the processed pressure contour image in view of the detected abnormal values of the sensor units. Generally, when the PSNR of the image is greater than 30 dB, the image quality is good. In this paper, the pressure contour of three states, namely, pressure generated with no object, by a cylindrical water bottle, and by cylindrical small medicine bottle, are selected. After the three pressure contours with abnormal values are processed by the median filter algorithm, the calculated values of the peak signal-to-noise ratio are all between 30-40 dB for the three states. The actual processing results reflect the effectiveness of the median filter algorithm. For the crosstalk problem, after 4 200 iterations of training using the input and output pressure contour data sets, the root-mean-square error of the U-Net convolutional neural network model is decreased from over 100 to 7.108, reaching convergence. Under the same pressure exertion conditions by placing palm, foot, cylindrical bottle and rectangular stick on the sensor array, it is shown that the U-Net model can eliminate more effectively the influence of crosstalk by the pressure contours of the fabric pressure sensor array than by the flexible pressure sensor array without crosstalk effect, in terms of the corrected pressure contour.

Conclusion The median filtering algorithm can effectively eliminate the the abnormally detected values by a sensing unit in the flexible fabric pressure sensor array, and the peak signal-to-noise ratio of the pressure contour presented by the flexible fabric pressure sensor array is greater than 30 dB, ensuring contour images with better quality. This also help reduce the manufacturing requirements for the flexible fabric pressure sensor array. The U-Net convolutional neural network can solve the crosstalk problem of the flexible fabric pressure sensor array and eliminate the crosstalk effect while allowing the use of a simple voltage divider circuit to measure the resistance value of the sensing unit.

Key words: fabric pressure sensor array, median filtering, U-Net convolutional neural network, plantar pressure monitoring, crosstalk

中图分类号: 

  • TP212.1

图1

织物压力传感阵列系统结构示意图 1—经向镀银导电纱线;2—纬向镀银导电纱线;3—柔性压力传感单元;4—基底织物;5—经向非导电纱线;6—纬向非导电纱线;7—数据采集传输模块。"

图2

不同物体作用下织物压力传感阵列系统的压力分布检测结果 注:左列为实物照片,右列为压力云图检测结果。"

图3

传感单元附近导电纱线的缝纫状态"

图4

中值滤波算法原理示意图"

图5

U-Net模型结构图"

图6

U-Net模型输入与输出端压力云图的采集"

表1

U-Net模型训练参数表"

名称 参数
求解器 Adam
学习率 0.001
验证频率 50次/轮
训练轮数 50轮
小批量(mini-batch)尺寸 128
运行环境 单核GPU

图7

不同物体作用下织物压力传感阵列系统的压力分布检测结果的异常值处理效果 注:左列为实物照片;右列为压力云图检测结果。"

图8

模型的均方根误差训练曲线图"

图9

织物压力传感阵列系统串扰影响消除效果 注:第1列为实物照片;第2列为织物压力传感阵列未校正的检测结果;第3列为U-Net模型输出结果;第4列为商用压力传感阵列检测结果。"

[1] 成锦, 赵永红, 李立国. 我国人口老龄化对经济发展的影响[J]. 中国商论, 2022, 864(17): 150-152.
CHENG Jin, ZHAO Yonghong, LI Liguo. The influence of population aging on economic development in China[J]. China Journal of Commerce, 2022, 864(17): 150-152.
[2] ZHANG K T, QI J L, ZUO P J, et al. The mortality trends of falls among the elderly adults in the mainland of China, 2013-2020: a population based study through the National Disease Surveillance Points system[J]. The Lancet Regional Health-West Pacific, 2022.DOI:10.1016/j.lanwpc.2021.100336.
[3] 叶良, 戚永钊, 施俊侠, 等. 人体摔倒检测技术研究综述[J]. 电子测试, 2020(2): 50-51.
YE Liang, QI Yongzhao, SHI Junxia, et al. Review of human fall detection technolog[J]. Electronic Test, 2020(2): 50-51.
[4] 李思明, 吴官正, 胡雨洁, 等. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(7): 138-144.
LI Siming, WU Guanzheng, HU Yujie, et al. Preparation and sensing performance of pressure distribution monitoring socks[J]. Journal of Textile Research, 2019, 40(7): 138-144.
[5] BRISENO A L, MANNSFELD S C B, LING M M, et al. Patterning organic single-crystal transistor arrays[J]. Nature, 2006, 444:913-917.
[6] 孙秀耀. 柔性力敏薄膜及阵列压力传感器的研究[D]. 成都: 电子科技大学, 2017: 9-14.
SUN Xiuyao. Research on flexible force sensitive film and array pressure sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 9-14.
[7] 张敏, 袁辉. 拉依达(PauTa)准则与异常值剔除[J]. 郑州工业大学学报, 1997, 18(1): 84-88.
ZAHNG Min, YUAN Hui. PauTa criterion and outlier elimination[J]. Journal of Zhengzhou University of Technology, 1997, 18(1): 84-88.
[8] 岳加利, 郝静, 卢海林, 等. 桥梁结构监测数据异常值处理方法[J]. 武汉工程大学学报, 2022, 44(1): 107-111.
YUE Jiali, HAO Jing, LU Hailin, et al. Rocessing method of abnormal value of bridge structure monitoring data[J]. Journal of Wuhan Engineering University, 2022, 44(1): 107-111.
[9] SHAO C, DU X C, YU J, et al. Cluster-based improved isolation forest[J]. Entropy, 2022, 24(5): 611.
[10] IENCO D, BORDOGNA G. Fuzzy extensions of the DBScan clustering algorithm[J]. Soft Computing, 2018, 22: 1719-1730.
[11] ARANDA L A, REVIRIEGO Pedro, MAESTRO J A. Error detection technique for a median filter[J]. IEEE Transactions on Nuclear Science, 2017, 64(8): 2219-2226.
[12] CHOWDHURY ROY Shambo, BHONDEKAR A, KUMAR Ritesh, et al. Analysis of a novel circuit arrangement to suppress crosstalk in 2-D resistive sensor arrays[J]. Circuits, System, and Signal Processing, 2020, 39: 1227-1243.
[13] MÜLLER S, SEICHTER D, GROSS H M. Cross-talk compensation in low-cost resistive pressure matrix sensors[C]// 2019 IEEE International Conference on Mechatronics (ICM). Piscataway: IEEE, 2019: 232-237.
[14] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI. Proceedings of 18th International Conference. Cham: Springer, 2015: 234-241.
[15] 裴泽光, 王小东, 许松林. 织物压力传感阵列及其制造方法、压力分布检测系统: 202111104952.4[P]. 2021-9-18.
PEI Zeguang, WANG Xiaodong, XU Songlin. Fabric pressure sensing array and its manufacturing method, pressure distribution detection system: 202111104952.4[P]. 2021-9-18.
[16] 王小东. 柔性织物压力传感系统构建与数据预处理方法研究[D]. 上海: 东华大学, 2023: 12-44.
WANG Xiaodong. Research on the construction of flexible fabric pressure sensing system and data preprocessing method[D]. Shanghai: Donghua University, 2023:12-44.
[1] 张缓缓, 马金秀, 景军锋, 李鹏飞. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40(12): 50-56.
[2] 徐洋, 朱治潮, 盛晓伟, 余智祺, 孙以泽. 基于机器视觉的鞋面特征点自动识别改进方法[J]. 纺织学报, 2019, 40(03): 168-174.
[3] 孙巧妍, 陈祥光, 刘美娜, 孙玉梅, 辛斌杰. 基于毛羽补偿与自适应中值滤波的纱线主体图像识别算法[J]. 纺织学报, 2019, 40(01): 62-66.
[4] 刘建立;左保齐. 织物疵点图像消噪方法的比较[J]. 纺织学报, 2007, 28(11): 128-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!