纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 1-9.doi: 10.13475/j.fzxb.20240400601

• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 •    下一篇

基于蛋白质类淀粉样聚集的纤维表面功能化

王皓月1, 胡亚宁1, 赵健1,2,3, 杨鹏1,2,3()   

  1. 1.陕西师范大学 应用表面与胶体化学教育部重点实验室, 陕西 西安 710119
    2.陕西师范大学西安市高分子软物质重点实验室, 陕西 西安 710119
    3.陕西师范大学 西安市功能纤维与柔性智能织物国际联合研究中心, 陕西 西安 710119
  • 收稿日期:2024-04-01 修回日期:2024-05-11 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 杨鹏(1978—),男,教授,博士。主要研究方向为类淀粉样蛋白质组装及表界面改性研究。E-mail:yangpeng@snnu.edu.cn
  • 作者简介:王皓月(1999—),女,硕士生。主要研究方向为蛋白质纤维的制备及应用。
  • 基金资助:
    国家杰出青年科学基金项目(52225301);国家重点研发计划资助项目(2020YFA0710400);国家重点研发计划资助项目(2020YFA0710402);111计划(B14041);中央高校基础研究基金项目(GK202305001);中央高校基础研究基金项目(GK202205017);陕西省科技厅一般项目-面上项目(2024JC-YBMS-304);陕西省国际科技合作项目(2022KWZ-24)

Surface functionalization of fibers based on amyloid-like protein aggregation

WANG Haoyue1, HU Yaning1, ZHAO Jian1,2,3, YANG Peng1,2,3()   

  1. 1. Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
    2. Xi'an Key Laboratory of Polymeric Soft Matter, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
    3. Xi'an International Joint Research Center on Functional Fiber and Soft Smart Textile, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
  • Received:2024-04-01 Revised:2024-05-11 Published:2024-08-15 Online:2024-08-21

摘要:

针对目前聚合物纤维表面功能化策略中改性工艺复杂、涂层稳定性差的不足,提出了一种基于蛋白质类淀粉样聚集的新型纤维表面功能化策略。将聚对苯二甲酸乙二醇酯(聚酯)纤维浸泡在含有功能物质的溶菌酶相转变水溶液中,在室温条件下反应即可在纤维表面形成稳定的功能化涂层。根据功能物质的不同,分别制备了银纳米颗粒涂层改性纤维及织物、量子点改性纤维和聚乙二醇(PEG)改性纤维及织物,并分别表征其性能与涂层稳定性。结果表明:溶菌酶质量浓度为0.02 mg/mL时,银纳米颗粒涂层改性纤维的导电性最优,1 cm纤维的电阻仅为1.39 Ω,且涂层具有较高的黏附稳定性,可抵抗胶带37次撕拉,经20 000次弯折后改性纤维的电阻无明显变化,同时银纳米颗粒涂层改性的聚酯织物表现出较好的抗菌性;量子点改性纤维在紫外光照射下发荧光,经过10 000次弯折测试后其荧光强度无明显衰减;PEG接枝溶菌酶涂层提升了纤维的亲水性,改性后织物的滴水浸湿时间由24 s缩短至2.5 s,透湿率由4 500 g/(m2·d)提高至5 800 g/(m2·d),改性层稳定可抵抗20 000次弯折。该策略在构筑功能纤维和功能织物方面表现出巨大潜力。

关键词: 蛋白质, 类淀粉样聚集, 表面改性, 纤维, 功能性纺织品

Abstract:

Objective Flexible wearable smart fabric is one of the ideal forms of the next generation of flexible wearable devices, in which the functional fiber construction plays a crucial role. In order to address the issues related to current surface functionalization strategies for polymer fibers such as complex modification processes and poor coating stability, this study developed a fiber surface functionalization strategy based on protein amyloid-like aggregation.

Method This strategy involves immersing polyester fibers in a lysozyme phase transition solution containing functional substances, which can form stable functional coatings on the fiber surface at room temperature. Silver nanoparticle coating-modified fibers and fabrics, quantum dot-modified fibers, and PEG-modified fibers and fabrics were prepared. During the preparation process, the disulfide bonds in the protein molecules are broken and the resulted unfolded molecular chains undergo amyloid-like aggregation to form protein nanocoatings containing functional units on the fiber surface. The electrical conductivity, antibacterial property, luminescence behavior, hydrophilicity and coating stability of the functional fibers and fabrics were characterized.

Results Various functional polyester fibers were fabricated based on the amyloid-like protein aggregation. The proteinaceous coating with specific functions was easily formed on the fibers surface within a short time under ambient conditions, exhibiting exceptional interfacial adhesion to withstand bending stresses and prevent functional coating detachment during the prolonged usage. The silver nanoparticle coating-modified fiber was prepared by means of amyloid-like protein aggregation induced by metal ions. The results suggested that when the lysozyme concentration was 0.02 mg/mL, the silver nanoparticle coating-modified fiber had optimal electrical conductivity with a resistance of only 1.39 Ω when length of fiber was 1 cm. It could withstand 37 tear-off cycles in a 3M tape test and showed no significant change in resistance after 20 000 bending cycles, indicating the high stability of the formed silver nanoparticle coating. Furthermore, the silver nanoparticle coating-modified polyester fabrics exhibited certain antibacterial activity. Therefore, silver nanoparticle coating-modified fibers can be used to prepare the conductive antibacterial textiles. Quantum dot-modified fibers exhibited fluorescence under UV irradiation and the fluorescence properties were closely related to the concentration of lysozyme. With the increase of lysozyme concentration, the fluorescence on the fiber surface first increased and then decreased. When the lysozyme concentration was 5 mg/mL, it had the strongest fluorescence intensity and maintained good stability with no significant decrease in fluorescence intensity after 10 000 bending tests. To improve the hydrophilicity of polyester fibers, the lysozyme-PEG conjugates were firstly synthesis. The lysozyme-PEG coating was formed on the fiber surface significantly improving its hydrophilicity, which was evaluated through the characterizations of water drop immersion and moisture permeability. It is demonstrated that water drop immersion time decreased from 24 s to 2.5 s and moisture permeability increased from 4 500 g/(m2·d) to 5 800 g/(m2·d). Furthermore, the water drops immersion time and moisture permeability of PEG modified fabrics was less affected by the cycle of bending.

Conclusion Inspired by the strong adhesion of protein amyloid structure in nature, functional nanocoatings on the surface of fibers were constructed successfully with high curvature based on the amyloid-like protein aggregation strategy. The strategy is simple, efficient, and environmentally friendly, and the coating function is highly adjustable by controlling the functional substances. Notably, the coating can adhere stably on the surface, effectively solving the coating debonding problem during long-term use. It provides a new method for fiber surface functionalization and has great application prospects in the field of flexible intelligent wearable fabrics.

Key words: protein, amyloid-like aggregation, surface modification, fiber, functional fabric

中图分类号: 

  • TQ342.8

图1

天然溶菌酶、银纳米颗粒涂层改性纤维、量子点改性纤维、PEG改性纤维的红外光谱中酰胺I带分峰图"

图2

未改性纤维、银纳米颗粒涂层改性纤维、量子点改性纤维、PEG改性纤维的ThT染色激光共聚焦荧光显微镜照片"

图3

未改性聚酯纤维和银纳米颗粒涂层改性纤维的光学照片、扫描电镜照片以及能谱分析数据"

图4

银纳米颗粒涂层改性聚酯纤维的抗撕拉次数"

图5

溶菌酶质量浓度为0.02、0.01和0.05 mg/mL时制备的银纳米颗粒涂层改性纤维的扫描电镜照片"

图6

弯折次数对银纳米颗粒涂层改性纤维电阻的影响"

图7

银纳米颗粒涂层改性织物对金黄色葡萄球菌和大肠杆菌的抗菌效果光学照片"

图8

量子点改性纤维的扫描电镜照片、激光共聚焦荧光显微镜照片和编织图案紫外灯照射前后的光学照片"

图9

不同质量浓度溶菌酶溶液制备的量子点改性纤维的激光共聚焦荧光显微镜照片"

图10

不同弯折次数下量子点改性纤维的激光共聚焦荧光显微镜照片"

图11

未改性织物和PEG改性织物表面水滴浸湿过程中不同时间点的接触角照片"

图12

不同质量浓度溶菌酶-PEG偶联物制备的改性织物在不同弯折次数下的滴水浸湿时间"

图13

不同质量浓度溶菌酶-PEG制备的改性织物在不同弯折次数下的透湿率"

[1] 闫鹏翔, 陈富星, 刘红, 等. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(2): 59-66.
YAN Pengxiang, CHEN Fuxing, LIU Hong, et al. Preparation of flexible force-sensing electronic textiles and construction of human motion monitoring system[J]. Journal of Textile Research, 2024, 45(2): 59-66.
[2] 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(3): 236-243.
LIU Huanhuan, MENG Hu, WANG Zhaohui. Progress and trends in application of wearable technology for elderly population[J]. Journal of Textile Research, 2024, 45(3): 236-243.
[3] LIU S, ZHANG W, HE J, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives[J]. Advanced Fiber Materials, 2024, 6: 36-67.
[4] NIU T, WU Y, ZHAI X, et al. Investigation on multifunctional modification of cotton fabrics for salt-free dyeing, resisting crease and inhibiting bacteria[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648(9): 129131-129141.
[5] PELIN C, SÖNMEZ M, PELIN G, et al. Composites based on polymeric blends reinforced with TiO2 modified aramid fibers[J]. Polymer Composites, 2024, 45(3): 1-21.
[6] XUE F, SU C, LI T. Friction and wear behaviors of surface-modified carbon fabric/epoxy resin composites[J]. Journal of Macromolecular Science, Part B, 2019, 58(5): 551-567.
[7] LIU X, LIANG C, ZHANG X, et al. Amyloid fibril aggregation: an insight into the underwater adhesion of barnacle cement[J]. Biochemical and Biophysical Research Communications, 2017, 493(1): 654-659.
doi: S0006-291X(17)31721-7 pmid: 28865959
[8] VENDRELL-FERNANDEZ S, LOZANO-PICAZO P, CUADROS-SANCHEZ P, et al. Conversion of the OmpF porin into a device to gather amyloids on the E. coli outer membrane[J]. ACS Synthetic Biology, 2022, 11(2): 655-667.
[9] WANG D, HA Y, YANG P, et al. 2D protein supramolecular nanofilm with exceptionally large area and emergent functions[J]. Advanced Materials, 2016, 28(34): 7414-7423.
[10] GU J, MIAO S, YANG P, et al. Multiplex binding of amyloid-like protein nanofilm to different material surfaces[J]. Colloid and Interface Science Communications, 2018, 22(9): 42-48.
[11] LIU C, LI X, LI X, et al. Preparation of conductive polyester fibers using continuous two-step plating silver materials[J]. Materials, 2018, 11(10): 2033-2049.
[12] SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(11): 240-245.
[13] LI C, LU D, YANG P, et al. Amyloid-like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity[J]. Advanced Materials, 2019, 31(46): 1903973-1903984.
[14] URNUKHSAIKHAN E, BOLD B-E, GUNBILEG A, et al. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from carduus crispus[J]. Scientific Reports, 2021, 11(1): 21047-21059.
doi: 10.1038/s41598-021-00520-2 pmid: 34702916
[1] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[2] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[3] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[4] 杨瑞华, 邵秋, 王翔. 再循环棉及涤纶短纤维的成纱性能与面料特征[J]. 纺织学报, 2024, 45(08): 127-133.
[5] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[6] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[7] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[8] 李天宇, 沈伟, 陈立峰, 竺铝涛. 三维角联锁机织复合材料的制备及其弯曲压缩失效机制[J]. 纺织学报, 2024, 45(08): 183-189.
[9] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[10] 席立锋, 马丕波, 贾伟, 王佳冕, 张红斌, 彭小权, 夏风林, 蒋高明. 国内体外膜肺氧合技术研究进展[J]. 纺织学报, 2024, 45(08): 234-240.
[11] 史芷丞, 张玉, 于鸿, 马桂玲, 陈凤翔, 徐卫林. 仿生结构生色技术及其在纺织领域应用的研究进展[J]. 纺织学报, 2024, 45(08): 241-249.
[12] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[13] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[14] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[15] 朵永超, 宋兵, 张如全, 许秋歌, 钱晓明. 熔融双组分超细纤维成纤技术研究进展[J]. 纺织学报, 2024, 45(08): 54-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!