纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 127-133.doi: 10.13475/j.fzxb.20230306301

• 纺织工程 • 上一篇    下一篇

再循环棉及涤纶短纤维的成纱性能与面料特征

杨瑞华(), 邵秋, 王翔   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2023-03-29 修回日期:2024-01-13 出版日期:2024-08-15 发布日期:2024-08-21
  • 作者简介:杨瑞华(1981—),女,教授,博士。主要研究方向为智能自动化纺纱技术和成纱理论、再循环纺织品回收利用。E-mail:yangrh@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(52273034);江苏省自然科学基金面上项目(BK20181350)

Spinning performance of recycled cotton and polyester fibers and fabric characteristics

YANG Ruihua(), SHAO Qiu, WANG Xiang   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-03-29 Revised:2024-01-13 Published:2024-08-15 Online:2024-08-21

摘要:

为解决再循环纤维产品质量差且难以实现高值高效利用的问题,利用转杯纺及其复合纱技术拓宽再循环棉、涤纶短纤维的利用途径,并提高其产品性能。将再循环纤维与原棉、粘胶、涤纶3种常见的短纤维进行混纺,并在此基础上引入不同比例、线密度的涤纶长丝、醋酯长丝、粘胶长丝纺制长丝/短纤包缠复合纱,分析成纱性能。研究发现:添加长丝可有效地提高再循环纤维转杯纺纱线的各项参数,涤纶长丝复合纱的断裂强度(11 cN/tex)优于粘胶长丝复合纱(8.38 cN/tex),醋酯长丝复合纱的断裂强度(8.16 cN/tex)最弱;涤纶长丝复合纱的条干不匀率(9.93%)与醋酯长丝复合纱(9.79%)差异不大,粘胶长丝复合纱的条干不匀率(10.15%)最差;长丝/短纤包缠复合纱的毛羽明显少于混纺纱,不同长丝之间毛羽差异不大;纱线性能的提高对织物断裂物理指标和吸湿速干性能均有不同程度的改善。

关键词: 再循环棉, 再循环涤纶, 长丝, 短纤维, 复合纱, 成纱性能, 织物性能

Abstract:

Objective Fibers recycled from waste textiles is known for their short length, and hence it is not easy to spin them into yarns again. They can be spun by rotor spinning which is well known for its low requirements raw material quality, but the yarns made from recycled fibers exhibit some disadvantages, such as low strength and poor abrasion resistance. The main objective of this study is to explore a novel method to improve the performance of recycled yarns.

Method Recycled cotton (length 9 mm) and recycled polyester fiber (length 6 mm) were mixed with cotton (length 28 mm), polyester and rayon fiber (length 38 mm) to make blended yarns. Using the same staple fibers, polyester filaments of 5.6 tex(36 f), 8.3 tex(82 f) and 11.1 tex(96 f) were involved to make filament/staple fiber composite yarns. An acetate filament of 8.3 tex(19 f) and a rayon filament of 8.3 tex(24 f) were selected as benchmarks for the newly developed yarns from recycled fibers and polyester filaments. Performance of yarns such as strength, evenness and hairiness were evaluated. Properties of fabrics knitted from these yarns such as strength, abrasion resistance and moisture absorption were examined.

Results The experimental results showed that the filament can effectively improve the performance of recycled rotor-spun yarns. In addition, the yarn quality was improved with increasing percentage of filaments. Staple fiber blended yarns exhibited lower strength than the filament/staple fiber composite yarns, and the staple yarn with the highest mass percentage of recycled fiber (up to 64.46%) showed the lowest strength. Among the filament/staple fiber composite yarns, the ones made with polyester filaments demonstrated the highest strength, followed by that with rayon filaments, and then acetate filament yarn. The filament/staple fiber composite yarns showed better yarn evenness compared with staple fiber blended yarns. There was little difference between the yarns made with polyester and acetate filament yarn, and rayon filament performed worst. The filament/staple fiber composite yarns ended up with less hairiness than the blended yarns. Little difference in hairiness was found between various filament/staple fiber composite yarns. The physical performances, moisture absorption and fast drying properties of the fabrics were better than the fabrics made from the benchmark yarns. The use of filaments in the fabrics improved the transverse and longitudinal breaking strength and elongation, bursting strength and thickness of the recycled fabrics. On the account of the strength and elongation of the recycled fabrics, fabrics made from polyester filaments and staple fibers were the best, followed by fabrics made from acetate filaments and then rayon filaments. The use of polyester/recycled staple yarns led to better the abrasion resistance of fabrics than the acetate and rayon filaments. The involvement of filaments in yarns showed little effect on moisture permeability of the fabrics. The effect of acetate filaments on moisture permeability was worse than that of rayon filaments. Compared to the filaments, the staple fibers had a greater effect on the perspiration permeability of the fabrics. The rayon staple fibers deminstrated the greatest perspiration permeability, followed by polyester staple fibers. For the improvement of moisture absorption performance of recycled fabrics, rayon filaments were the best, followed by the acetate filaments and then polyester filaments.

Conclusion By introducing filaments and various staple fibers to spun with recycled fibers, the disadvantages of recycled yarns was addressed. The physical performance, moisture absorption and fast drying properties of the fabrics made from recycled fibers were optimized. This work provides a new approach to the high value use of recycled fibers. The quantity of waste textiles is increasing year by year. The good efficient, high speed and valuable utilisation of recycled fibers is an inevitable market demand. Among the recycled products, the filament/staple fiber composite yarns with recycled fibers have good prospects for development.

Key words: recycled cotton, recycled polyester fiber, filament, staple fiber, composite yarn, yarn performance, fabric property

中图分类号: 

  • TS111

表1

纱线的纤维种类与含量"

纱线
编号
纱线成分 棉纤
维含
量/%
粘胶
短纤
含量/
%
涤纶
短纤
含量/
%
再循环
棉纤维
含量/
%
再循环
涤纶纤
维含
量/%
涤纶
长丝
含量/
%
醋酯
长丝
含量/
%
粘胶
长丝
含量/
%
涤纶长
丝线密度
醋酯长
丝线密度
粘胶长
丝线密度
所织织
物编号
1# C/rC/rP 68.34 0 0 19.00 12.66 0 0 0 1*
2# C/rC/rP/Pf 58.11 0 0 16.13 10.76 15 0 0 5.6 tex(36 f) 2*
3# C/rC/rP/Pf 52.49 0 0 14.71 9.80 23 0 0 8.3 tex(72 f) 3*
4# C/rC/rP/Pf 47.87 0 0 13.28 8.85 30 0 0 11.1 tex(96 f) 4*
5# R/rC/rP 0 36 0 38.22 25.78 0 0 0 5*
6# R/rC/rP/Pf 0 30 0 32.85 22.15 15 0 0 5.6 tex(36 f) 6*
7# R/rC/rP/Pf 0 28 0 29.94 19.06 23 0 0 8.3 tex(72 f) 7*
8# P/rC/rP 0 0 39 36.52 24.48 0 0 0 8*
9# P/rC/rP/Pf 0 0 33 31.19 20.81 15 0 0 5.6 tex(36 f) 9*
10# P/rC/rP/Pf 0 0 30 28.04 18.96 23 0 0 8.3 tex(72 f) 10*
11# C/Acf 77.41 0 0 0 0 0 22.59 0 8.3 tex(19 f) 11*
12# C/Rf 77.41 0 0 0 0 0 0 22.59 8.3 tex(24 f) 12*
13# C/rC/Pf 38.71 0 0 38.70 0 22.59 0 0 8.3 tex(36 f) 13*
14# C/rC/Acf 60.57 0 0 16.84 0 0 22.59 0 8.3 tex(19 f) 14*
15# C/rC/Rf 60.57 0 0 16.84 0 0 0 22.59 8.3 tex(24 f) 15*

图1

纱线断裂强度与断裂伸长率"

图2

纱线条干不匀率"

图3

纱线毛羽指数"

图4

织物的强力和断裂伸长率"

图5

织物顶破强力和顶破高度"

图6

织物耐磨性能"

图7

织物透湿性和速干性"

图8

织物吸湿时间与芯吸高度"

[1] YURTASLAN O, KURTOGLU S A, YILMAZ D. Closed-loop mechanical recycling opportunities in industrial cotton wastes[J]. Journal of Natural Fibers, 2019, 19(15): 10802-10817.
[2] 吴琦萍, 范海芳, 刘倩丽. 循环再生棉纱生产技术及其产品适应性研究[J]. 棉纺织技术, 2020, 48(8): 51-54.
WU Qiping, FAN Haifang, LIU Qianli. Research on production technology and product adaptability of recycled regenerated cotton yarn[J]. Cotton Textile Technology, 2020, 48(8): 51-54.
[3] LIU Y, HUANG H H, ZHU L B, et al. Could the recycled yarns substitute for the virgin cotton yarns: a comparative LCA[J]. International Journal of Life Cycle Assessment, 2020, 25(10): 2050-2062.
[4] 杨瑞华, 邵秋, 张欣, 等. 废旧涤棉纺织品的回收循环再利用技术[J]. 服装学报, 2022, 7(4): 283-290.
YANG Ruihua, SHAO Qiu, ZHANG Xin, et al. Recycling and reuse technology of waste polyester and cotton textiles[J]. Journal of Clothing Research, 2022, 7(4): 283-290.
[5] 陈龙, 周哲, 张军, 等. 废旧棉与涤纶纺织品化学法循环再生利用的研究进展[J]. 纺织学报, 2022, 43(5): 43-48.
CHEN Long, ZHOU Zhe, ZHANG Jun, et al. Research progress in chemical recycling of waste cotton and polyester textiles[J]. Journal of Textile Research, 2022, 43(5): 43-48.
[6] 樊威, 刘红霞, 陆琳琳, 等. 废旧天然纤维纺织品回收利用现状及高值化利用策略[J]. 纺织学报, 2022, 43(5): 49-56.
FAN Wei, LIU Hongxia, LU Linlin, et al. Progress in recycling waste natural fiber textiles and high-value utilization strategy[J]. Journal of Textile Research, 2022, 43(5): 49-56.
[7] 王飞龙. 废旧纺织品在产业用纺织品领域中的高值化利用[J]. 产业用纺织品, 2022, 40 (3): 1-4.
WANG Feilong. High value utilization of waste textiles in the field of technical textiles[J]. Technical Textiles, 2022, 40 (3): 1-4.
[8] 汪军. 纺纱新技术发展现状及趋势[J]. 棉纺织技术, 2022, 50(8): 1-6.
WANG Jun. Development status and trend of spinning new technology[J]. Cotton Textile Technology, 2022, 50 (8): 1-6.
[9] 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(8): 34-40.
WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress recycling and reuse of waste textiles[J]. Journal of Textile Research, 2021, 42 (8): 34-40.
[10] UTEBAY B, CELIKB P, CAYB A. Valorization of fabric wastes through production of recycled cotton yarns by compact ring and open-end rotor spinning[J]. Journal of Cleaner Production, 2023, 409(10): 137135-137144.
[11] 韩非, 郎晨宏, 邱夷平. 废旧纺织品资源化循环利用研究进展[J]. 纺织学报, 2022, 43(1): 96-105.
HAN Fei, LANG Chenhong, QIU Yiping. Research progress in resource recycling based on waste textiles[J]. Journal of Textile Research, 2022, 43(1): 96-105.
[12] KHAN K R, HOSSAIN M M, CHANDRA S R. Statistical analyses and predicting the properties of cotton/waste blended open-end rotor yarn using Taguchi OA design[J]. International Journal of Textile Science, 2015(2): 22-35.
[13] WANASSI B, BECHIR A, MOHAMED B. Industrial cotton waste: recycling, reclaimed fiber behavior and quality prediction of its blend[J]. Tekstil Ve Konfeksiyon, 2018, 28: 14-20.
[14] HALIMI M T, BECHIR A, MOHAMED B H, et al. Influence of spinning parameters and recovered fibers from cotton waste on the uniformity and hairiness of rotor spun yarn[J]. Journal of Engineered Fibers and Fabrics, 2009, 4(3): 36-44.
[15] 杨瑞华, 刘超, 薛元, 等. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(3): 26-30.
YANG Ruihua, LIU Chao, XUE Yuan, et al. Simulation of fiuld flow in rotor composite spinning unit and analysis on yarn quality[J]. Journal of Textile Research, 2018, 39(3): 26-30.
[16] 杨瑞华, 薛元, 王善元. 转杯纺复合纱与sirofil复合纱的性能对比分析[J]. 纺织学报, 2007(12): 30-33.
YANG Ruihua, XUE Yuan, WANG Shanyuan. Comparative analysis of properties of open-end rotor spun composite yarn and sirofil yarn[J]. Journal of Textile Research, 2007(12): 30-33.
[17] 刘超. 转杯纺复合纱气流特征及其成纱参数优化研究[D]. 无锡: 江南大学, 2017: 1-4.
LIU Chao. Study of airflow characteristics during rotor spun composite yarn spinning process and yarn parameters optimization[D]. Wuxi: Jiangnan University, 2017: 1-4.
[18] 武红艳, 罗伟国, 李扬. 二醋片和醋酯长丝的市场分析及前景展望[J]. 合成纤维, 2012, 41(8): 10-13.
WU Hongyan, LUO Weiguo, LI Yang. Market analysis and prospect of diacetate tablets and acetic acid filament[J]. Synthetic Fiber in China, 2012, 41 (8): 10-13.
[1] 谭轶丹, 张昭华, 李诗涵. 不同感官模态对织物湿感觉的影响[J]. 纺织学报, 2024, 45(06): 82-88.
[2] 卢韵静, 王雪, 齐元章, 宋琳, 廉志军, 李鑫. 颜料与线密度对原液着色涤纶短纤维及纱线颜色的影响[J]. 纺织学报, 2024, 45(03): 97-105.
[3] 王博, 刘美亚, 陈明娜, 宋孜灿, 夏明, 李沐芳, 王栋. 聚吡咯/氨纶长丝的应变传感性能与应用[J]. 纺织学报, 2024, 45(02): 119-125.
[4] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[5] 谢艳霞, 张唯强, 徐亚宁, 赵书涵, 尹雯萱, 张文强, 韩旭. 商用聚对苯二甲酸乙二醇酯短纤维中低聚物析出机制及影响因素[J]. 纺织学报, 2024, 45(01): 65-73.
[6] 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9.
[7] 缪璐璐, 董正梅, 朱繁强, 荣慧, 何林伟, 郑国全, 邹专勇. 芯丝种类与纺纱速度对喷气涡流纺包芯纱性能的影响[J]. 纺织学报, 2023, 44(12): 50-57.
[8] 贾冰凡, 敖利民, 唐雯, 郑元生, 尚珊珊. 毛纱/锦纶长丝包覆纱的纺制及其性能与应用[J]. 纺织学报, 2023, 44(12): 58-66.
[9] 骆春旭, 龚浩然, 吴敏勇, 黄丛, 刘可帅. 特种玄武岩缝纫线的制备工艺及其性能[J]. 纺织学报, 2023, 44(11): 61-66.
[10] 聂文琪, 许帅, 高俊帅, 方斌, 孙江东. 聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(09): 35-42.
[11] 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(08): 57-62.
[12] 付驰宇, 徐傲, 齐硕, 王凯, 缪莹, 尚路路, 夏治刚. 形状记忆合金复合纱线及其面料驱动性能[J]. 纺织学报, 2023, 44(06): 91-97.
[13] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[14] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[15] 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!