纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 150-157.doi: 10.13475/j.fzxb.20230906301

• 纺织工程 • 上一篇    下一篇

经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响

张琦(), 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2023-09-28 修回日期:2024-04-11 出版日期:2024-08-15 发布日期:2024-08-21
  • 作者简介:张琦(1977—),男,副教授,博士。主要研究方向为新型针织装备与针织工艺。E-mail:zhangqi_vip@jiangnan.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(JUSRP123005);无锡市“太湖之光”科技攻关(基础研究)项目(K20221007)

Influence of jacquard layer structure of warp knitted jacquard spacer shoe-upper materials on tensile properties

ZHANG Qi(), TU Jiani, ZHANG Yanting, DING Ningyu, HAO Jiashu, PENG Shiyu   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-09-28 Revised:2024-04-11 Published:2024-08-15 Online:2024-08-21

摘要:

为使经编贾卡间隔鞋面材料兼具透气舒适性与良好力学性能,选取4种不同提花层结构的贾卡间隔鞋面材料进行拉伸断裂实验和不同定载荷下的循环拉伸实验,探究在产品设计时由于厚组织与网眼组织的比例不同及排布方式变化导致的织物不同方向上拉伸变形特性的差异。结果表明:提花层结构中厚组织与网眼组织的比例是影响织物拉伸性能的主要因素,增加厚组织的比例能够提高鞋面材料的断裂强力和循环拉伸性能,全厚组织织物的拉伸性能最好;改变厚组织与网眼组织的排布方式也会影响鞋面材料的拉伸性能,增加延展线的数量和长度,纵向减少连续排列的网眼组织线圈横列数以减小网眼尺寸,可改善鞋面材料的断裂强力和循环拉伸性能;织物纵向拉伸性能明显优于横向,在循环拉伸实验中,织物纵向产生的残余变形远小于横向,且循环拉伸后纵向断裂强力高于循环拉伸前的横向断裂强力,故在实际应用中应避免将织物横向排列在受力方向上。

关键词: 经编间隔织物, 鞋面材料, 贾卡提花, 提花层结构, 拉伸性能

Abstract:

Objective Warp knitted jacquard spacer fabrics are widely used in sports shoes. In order to ensure the comfort of sports shoes, mesh is usually formed in the shoe-upper materials to improve the air permeability, but the mesh inevitably affects the tensile properties of fabrics, and in actual wearing. The shoe-upper materials endure long-term cyclic tensioning and eventually produce irreversible deformation, but this phenomenon is rarely explored up to date. Therefore, it is necessary to study the factors affecting the cyclic tensile properties of shoe-upper materials and optimize the design of the jacquard structure, aiming to achieve a better balance between the permeability and mechanical properties of the material and improve its service life.

Method The study selected warp knitted jacquard spacer fabrics with different jacquard layer structures commonly used in shoe-upper materials as samples, and tensile break experiments were conducted on MTS Exceed Model E43 to determine the tensile limit range. Three sets of constant load schemes were designed based on application scenarios, and 200 cyclic tensile tests were carried out on MARK-10 tensile tester to compare and analyze the influence of jacquard layer structure on the tensile properties of fabrics. Tensile break test was carried out after cyclic stretching to compare the mechanical properties of the samples before they were gone through the cyclic tensile test.

Results The tensile break results showed that the breaking strength of the same fabric in the wale direction was greater than that in the course direction, while the breaking elongation at break in the wale direction was smaller than that in the course direction, which was due to the chain stitch limiting the fabric elongation. When other conditions are kept the same, the sample with jacquard layer structure only consisting of solid structures has the highest breaking strength and the lowest elongation at break in both directions. Based on this, for every 25% increase in mesh structure, the breaking strength in the wale direction decreases by 8.60%-11.60%, and the breaking strength in the course direction decreases by 28.54%-31.24%. When two samples have the same composition percentage of solid structure and mesh structure in the jacquard layer, a greater number of continuous courses in the wale direction represents a larger mesh size, which reduces the breaking strength of the fabric. This is because the solid structure has more yarns under tensile and can bear lager external force. Most of the fabric deformation occurred at the initial stage of cyclic tension, and the residual deformation generated in the first cycle is the largest, accounting for 58.38% - 66.52% of the total residual deformation. With the increase of the number of cycles, the residual deformation gradually accumulates, and the increment gradually decreases. The cyclic tensile properties of fabrics differed greatly in wale and course directions. Under the same loading conditions, the residual deformation produced by cyclic tensile was much larger in the wale direction than in the course direction, which is because the tensile strength of the fabric in the course direction is much less than that in the wale direction, and the elongation at break in the course direction is larger, so that the deformation produced by stretching in the course direction is much larger too. Under the same loading conditions and basic structure, the sample with a greater percentage of solid structure in the jacquard layer has a less residual deformation, indicating that it has a lower degree of deformation and excellent cyclic tensile resistance. When two samples have the same ratio of solid structure to mesh structure composition of the jacquard layer, the cyclic tensile resistance of the fabric could be improved by changing the arrangement of the mesh structure to increase the number and length of underlaps and reduce the number of continuous courses in the wale direction to reduce the mesh size.After cyclic stretching, the breaking strength of the fabric in both directions is significantly decreased, and the sample with the least percentage of solid structure in the jacquard layer shows most significantly.

Conclusion The composition percentage of solid structure and mesh structure in the jacquard layer is the main factor affecting the tensile properties and cyclic tensile resistance of shoe-upper materials. Increasing the percentage of solid structure and changing the arrangement of mesh can affect its tensile property. The fabric with jacquard layer only consisting of solid structure has the best tensile property. The tensile property of the fabric in the wale direction is obviously better than that in the course direction, so in practical application, it should be avoided to make the fabric transverse and the force direction the same.

Key words: warp knitted spacer fabric, shoe-upper material, jacquard, jacquard layer structure, tensile property

中图分类号: 

  • TS186.1

表1

试样基本规格"

试样
编号
横密/
(纵行·cm-1)
纵密/
(横列·cm-1)
面密度/
(g·m-2)
厚度/
mm
S1 10 16 501 3
S2 10 16 494 3
S3 10 16 438 3
S4 10 15 454 3

表2

试样织造工艺参数"

垫纱数码 原料规格 穿纱
GB1:1-0-0-0/0-1-1-1// 166.67 dtex(48 f) 涤纶FDY 满穿
GB2:1-0-0-0/2-3-3-3// 166.67 dtex(48 f) 涤纶FDY 满穿
GB3:1-0-1-2/1-0-1-2// 33.33 dtex 涤纶单丝 满穿
JB4:1-1-1-0/1-1-1-2// 166.67 dtex(48 f) 涤纶FDY 满穿
GB5:1-1-1-0/0-0-0-1// 166.67 dtex(48 f) 涤纶FDY 满穿

图1

贾卡意匠图"

表3

试样贾卡工艺参数量化表"

试样
编号
厚(红)组
织比例/%
薄(绿/蓝)
组织比例/%
网眼(白)
组织比例/%
网眼尺寸/
线圈横列
S1 100 0 0 0
S2 50 0 50 2
S3 75 0 25 4
S4 75 0 25 8

图2

试样实物图"

图3

织物拉伸断裂曲线"

图4

织物断裂强力和断裂伸长率对比"

图5

150 N横向定载荷下S1的循环拉伸前3次曲线"

图6

150 N横向定载荷下S1的循环拉伸200次曲线"

图7

不同定载荷下4种织物累积残余变形随循环次数的变化"

表4

循环拉伸前后织物断裂强力对比"

试样
编号
循环拉伸前断
裂强力/N
循环拉伸后断
裂强力/N
循环拉伸前后断裂
强力变化率/%
纵向 横向 纵向 横向 纵向 横向
S1 1 166.39 973.50 805.943 827.06 -30.90 -15.04
S2 942.41 478.32 642.93 328.80 -31.78 -31.26
S3 1 031.09 695.68 757.63 529.42 -26.52 -30.90
S4 973.66 659.70 677.48 480.43 -30.42 -27.17
[1] 魏赛男, 姚继明, 彭志远. 鞋材用经编间隔织物的服用性能[J]. 上海纺织科技, 2012, 40(11): 16-19.
WEI Sainan, YAO Jiming, PENG Zhiyuan. Wearing properties of warp-knitted spacer fabric for shoe making[J]. Shanghai Textile Science & Technology, 2012, 40(11): 16-19.
[2] 孙婉, 缪旭红, 王晓雷. 贾卡提花经编间隔织物的撕裂性能[J]. 纺织学报, 2019, 40(6): 32-37.
SUN Wan, MIAO Xuhong, WANG Xiaolei. Tearing properties of jacquard warp knitted spacer fabric[J]. Journal of Textile Research, 2019, 40(6): 32-37.
[3] 杨大伟, 缪旭红, 孙婉. 经编间隔织物的拉伸特征[J]. 纺织学报, 2017, 38(4): 55-60.
YANG Dawei, MIAO Xuhong, SUN Wan, et al. Tensile characteristics of warp knitted spacer fabrics[J]. Journal of Textile Research, 2017, 38(4): 55-60.
[4] GHORBANI V, JEDDI A A A, DABIRYAN H. Theoretical and experimental investigation of tensile properties of net warp-knitted spacer fabrics[J]. Journal of The Textile Institute, 2020, 111(4): 518-528.
[5] 张琦, 魏莉, 夏风林. 三层双色立体提花经编鞋材的开发[J]. 纺织学报, 2019, 40(3): 59-64.
ZHANG Qi, WEI Li, XIA Fenglin. Development of warp-knitted three-layer and double color stereo jacquard shoe-upper[J]. Journal of Textile Research, 2019, 40(3): 59-64.
[6] 罗向东, 段思岐, 薛朝华, 等. 男鞋帮面与足触点压力对穿着舒适性的影响[J]. 皮革科学与工程, 2022, 32(1): 78-82.
LUO Xiangdong, DUAN Siqi, XUE Chaohua, et al. Influence of men's shoes upper and foot contact pressure on wearing comfort[J]. Leather Science and Engineering, 2022, 32(1): 78-82.
[7] 黄萍, 钟慧敏, 陈博, 等. 正常青年人三维步态:时空及运动学和运动力学参数分析[J]. 中国组织工程研究, 2015, 19(24): 3882-3888.
HUANG Ping, ZHONG Huimin, CHEN Bo, et al. Three-dimensional gait analysis in normal young adults: temporal, kinematic and mechanical parameters[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(24): 3882-3888.
[8] 林华, 孙志宏, 邵国为, 等. 不同编织结构网状织物力学性能对比分析[J]. 东华大学学报(自然科学版), 2022, 48(4): 36-42.
LIN Hua, SUN Zhihong, SHAO Guowei, et al. Comparison and analysis of mechanical properties of mesh fabrics with different braided structures[J]. Journal of Donghua University(Natural Science), 2022, 48(4): 36-42.
[9] 杨大伟. 拉伸条件下经编间隔织物的三维形变研究[D]. 无锡: 江南大学, 2017: 14-15.
YANG Dawei. The research of three dimensional deformation of warp knitted spacer fabrics under tension condition[D]. Wuxi: Jiangnan University, 2017: 14-15.
[10] ZHAO Shuaiquan, CHANG Yuping, YANG Yadie, et al. Auxetic behavior of warp knitted fabric under repeating tension[J]. Textile Research Journal, 2021, 91(15/16): 1732-1741.
[1] 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84.
[2] 孙园园, 张琦, 张燕婷, 丁宁宇, 左露娇. 经编双针床贾卡鞋材的网孔结构研究[J]. 纺织学报, 2023, 44(11): 98-104.
[3] 李久刚, 金鑫鹏, 邓文韬, 秦雪, 张贺, 黄丛, 刘可帅. 氧化铝纱线的合股数与捻度对其强度的影响[J]. 纺织学报, 2023, 44(10): 48-52.
[4] 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(08): 57-62.
[5] 孙园园, 张琦, 张燕婷, 左露娇, 丁宁宇. 三维通孔结构三色三贾卡提花间隔鞋材的研发[J]. 纺织学报, 2023, 44(07): 110-115.
[6] 周濛濛, 蒋高明. 玻璃纤维衬经衬纬纬编管状织物的制备及其拉伸性能[J]. 纺织学报, 2023, 44(07): 132-140.
[7] 成悦, 左涵, 安琪, 李大伟, 张伟, 付译鋆. 非可吸收倒刺缝合线握持力及其影响因素[J]. 纺织学报, 2023, 44(06): 66-71.
[8] 陈小明, 任志鹏, 郑宏伟, 吴凯杰, 苏星兆, 陈利. 基于预/主刺协同的针刺织物力学性能提升方法[J]. 纺织学报, 2023, 44(04): 100-107.
[9] 孙晓伦, 陈利, 张一帆, 李默涵. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(08): 74-79.
[10] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[11] 张晓会, 杨曈, 马丕波. 基于3D打印的竹节结构中空单丝制备及其压缩性能[J]. 纺织学报, 2019, 40(12): 32-38.
[12] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
[13] 张琦, 罗成, 曲超群, 魏莉, 程茜, 夏风林. 现代经编电子提花断点续织关键控制技术[J]. 纺织学报, 2019, 40(10): 164-170.
[14] 陈美玉, 孙润军, 张长琦, 刘先锋. 经编间隔织物的缓压性能[J]. 纺织学报, 2019, 40(07): 58-63.
[15] 张琦, 魏莉, 罗成, 夏风林, 蒋高明. 基于双总线架构的经编机双贾卡提花控制系统[J]. 纺织学报, 2019, 40(07): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!