纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 18-25.doi: 10.13475/j.fzxb.20240400101

• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇    下一篇

静电纺海藻酸钠复合纳米纤维膜制备及其性能

钱洋, 张璐, 李晨阳, 王荣武()   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2024-04-01 修回日期:2024-05-12 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 王荣武(1974—),男,教授,博士。主要研究方向为计算机图像处理在纺织上的应用。E-mail:wrw@dhu.edu.cn
  • 作者简介:钱洋(1999—),女,博士生。主要研究方向为医用非织造材料。
  • 基金资助:
    国家重点研发计划项目(2022YFB4700600);国家重点研发计划项目(2022YFB4700605)

Preparation and performance of electrospun sodium alginate composite nanofiber membranes

QIAN Yang, ZHANG Lu, LI Chenyang, WANG Rongwu()   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2024-04-01 Revised:2024-05-12 Published:2024-08-15 Online:2024-08-21

摘要:

针对现有创伤敷料在促伤口愈合及防粘连方面存在的不足,采用静电纺丝技术,以去离子水为溶剂,选用生物相容性材料海藻酸钠进行制备,通过分析溶液电导率、纤维形态及直径分布,优化溶液配比,成功制得具有良好生物相容性、可降解性和高比表面积的海藻酸钠/聚环氧乙烷/聚乙烯吡咯烷酮复合纳米纤维膜。结果显示:当海藻酸钠与聚环氧乙烷质量比为1∶4,海藻酸钠/聚环氧乙烷总质量分数为4%,聚乙烯吡咯烷酮占溶质总质量的10%时,所得复合纳米纤维膜形貌均匀,纤维直径约为240 nm;经氯化钙质量分数为3.0%的无水乙醇溶液交联处理24 h后,复合纳米纤维膜的吸液倍率达到1 050.80%,质量损失率为40.63%,显著提升了其耐水性和结构稳定性,展现了在创伤修复领域的应用潜力。

关键词: 静电纺丝, 海藻酸钠, 聚环氧乙烷, 聚乙烯吡咯烷酮, 纳米纤维膜, 交联改性, 创伤敷料

Abstract:

Objective This study aimed to harness the biocompatibility, biodegradability, and anti-adhesion properties of sodium alginate (SA) for potential use in wound dressings. Utilizing environmentally friendly deionized water as a solvent, a composite nanofiber membrane of SA, polyethylene oxide (PEO), and polyvinylpyrrolidone (PVP) was fabricated through a modified small linear trough electrospinning device. The research focused on optimizing the solution's conductivity, fiber morphology, and diameter distribution of the spinning solution to enhance the spinnability of the SA solution and improve the functional properties of the final membrane.

Method The optimal solution mixture was determined through the analysis of solution conductivity, fiber morphology, and diameter distribution. The prepared nanofiber membranes were crosslinked by 3.0% anhydrous ethanol solution of calcium chloride (CaCl2) for varying durations (0, 2, 4, 8, 12, 24 h). After post-treatment, the samples were systematically analyzed for microscopic morphology, chemical structure, swelling behavior, and structural stability to evaluate the effects of cross-linking on membrane properties.

Results With a mass ratio of 1∶ 4 between SA and PEO, 4% total solute mass fraction, and PVP constituting 10% of the total solute mass, the SA/PEO/PVP composite nanofiber membranes exhibited uniform morphology with fibers averaging 240 nm in diameter and forming a three-dimensional interwoven network. This network structure was crucial for achieving significant mechanical strength and durability. Cross-linking for 24 h resulted in enhanced water resistance and structural stability, with a swelling ratio of 1 050.80% and a mass loss rate of 40.63%, indicating superior physical properties.

Conclusion The study successfully developed SA/PEO/PVP composite nanofiber membranes with excellent morphology and enhanced performance after CaCl2 cross-linking. The introduction of PEO and PVP not only improved the spinnability of SA but also contributed to the compatibility within the composite, underscoring the potential of these membranes as substrates for wound healing applications. This research emphasizes the innovation of using deionized water as a solvent in a non-toxic spinning process, addressing environmental concerns related to organic solvents. This provides strong evidence for promoting wound healing in accordance with the principles of moist wound healing and offers new insights and directions for the development of advanced wound care solutions.

Key words: electrospinning, sodium alginate, polyethylene oxide, polyvinylpyrrolidone, nanofiber membrane, cross-linking modification, wound dressing

中图分类号: 

  • TQ340

图1

静电纺丝机三维图像"

图2

SA与PEO溶液在不同体积比下制备的静电纺纳米纤维的SEM照片和直径分布图"

表1

不同比例SA/PEO静电纺纳米纤维的直径分布参数"

SA与PEO体积比 平均直径/nm 极差/μm CV值/%
30∶70 300 0.64 49.94
40∶60 320 0.67 47.39
50∶50 300 0.59 46.41
60∶40 300 0.62 50.64
70∶30 300 0.74 50.61

图3

PVP质量分数对纺丝液电导率的影响"

图4

最优工艺制备的SA/PEO/PVP复合纳米纤维的SEM照片和直径分布图"

图5

SA/PEO/PVP复合纳米纤维膜经不同时间CaCl2交联处理后的微观形貌"

图6

不同交联时间的复合纳米纤维膜在PBS溶液中处理24 h后的吸液倍率和质量损失率"

图7

SA和交联改性前后复合纳米纤维膜的红外光谱图"

图8

温度和浸泡时间对SA/PEO/PVP复合纳米纤维膜稳定性的影响"

[1] MEHMET Evren Okur, IOANNIS D Karantas, PANORAIA I Siafaka, et al. Recent trends on wound management: new therapeutic choices based on polymeric carriers[J]. Asian Journal of Pharmaceutical Sciences, 2020, 15(6): 661-684.
doi: 10.1016/j.ajps.2019.11.008 pmid: 33363624
[2] ZAHEDI P, REZAEIAN I, RANAEI-SIADAT SO, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J]. Polymers for Advanced Technologies, 2010.DOI:10.1002/pat.1625.
[3] 朱鹏, 张兴群, 王云龙, 等. 海藻酸盐医用敷料研究进展[J]. 上海纺织科技, 2020, 48(11): 13-18.
ZHU Peng, ZHANG Xingqun, WANG Yunlong, et al. Progress in research on alginate medical dressings[J]. Shanghai Textile Science & Technology, 2020, 48(11): 13-18.
[4] 吴洋, 刘方恬, 曹孟杰, 等. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(3): 8-16.
WU Yang, LIU Fangtian, CAO Mengjie, et al. Research progress on biomass fiber medical dressings[J]. Journal of Textile Research, 2022, 43(3): 8-16.
[5] 何劲, 陈莉, 刘玉森. 静电纺丝在多组分医用敷料中的应用及进展[J]. 纺织科技进展, 2020(7): 1-4.
HE Jin, CHEN Li, LIU Yusen. Application and progress of electrospinning in multicomponent medical dressings[J]. Advances in Textile Technology, 2020(7): 1-4.
[6] 刘鹏. 静电纺丝在生物医用材料领域的应用综述[J]. 山东纺织经济, 2020(4): 26-28, 39.
LIU Peng. A review of the application of electrospinning in the field of biomedical materials[J]. Shandong Textile Economy, 2020(4): 26-28,39.
[7] ZHANG X, WANG Y, GAO Z, et al. Advances in wound dressing based on electrospinning nanofibers[J]. Journal of Applied Polymer Science, 2023.DOI:10.1002/app.54746.
[8] FERNANDO S P I, LEE W, HAN J E, et al. Alginate-based nanomaterials: fabrication techniques, properties, and applications[J]. Chemical Engineering Journal, 2020, 391: 123823-123823.
[9] ALEJANDRO H, ALJABALI A A A, VIJAY M, et al. Alginate: enhancement strategies for advanced applications[J]. International Journal of Molecular Sciences, 2022, 23(9): 4486-4486.
[10] VIVIANA U, NATALY M, FERNANDO A, et al. Bacterial alginate production: an overview of its biosynthesis and potential industrial production[J]. World Journal of Microbiology Biotechnology, 2017. DOI:10.1007/s11274-2017-2363-x.
[11] 马肖. 海藻酸钠纺丝原液粘度研究[J]. 纺织科学研究, 2016(9): 92-93.
MA Xiao. Study on the viscosity of sodium alginate spinning solution[J]. Textile Science Research, 2016(9): 92-93.
[12] 杨锦铸. 海藻酸钠基多级结构纳米纤维膜的制备与性能研究[D]. 青岛: 青岛大学, 2023: 1-20.
YANG Jinzhu. Preparation and performance study of sodium alginate-based hierarchical nano fiber membranes[D]. Qingdao: Qingdao University, 2023: 1-20.
[13] 王春红, 李明, 龙碧旋, 等. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(5): 16-22.
WANG Chunhong, LI Ming, LONG Bixuan, et al. Preparation and properties of polyvinyl alcohol/sodium alginate/berberine medical dressings[J]. Journal of Textile Research, 2021, 42(5): 16-22.
[14] TAEMEH A M, SHIRAVANDI A, KORAYEM A M, et al. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2019.115419.
[15] JANJA Mirtič, HELENA Balažic, ŠPELA Zupančič, et al. Effect of solution composition variables on electrospun alginate nanofibers: response surface analysis[J]. Polymers, 2019. DOI:10.3390/polym11040692.
[16] 査艳凤, 钱洁, 候大寅. CS/PVP复合纳米纤维膜的制备及其表征[J]. 安徽工程大学学报, 2015, 30(2): 75-79.
ZHA Yanfeng, QIAN Jie, HOU Dayin. Preparation and characterization of CS/PVP composite nanofiber membranes[J]. Journal of Anhui University of Technology, 2015, 30(2): 75-79.
[17] CHANEZ B, SYLVIE D, LAURENT P, et al. Advances on alginate use for spherification to encapsulate biomolecules[J]. Food Hydrocolloids, 2021. DOI:10.1016/j.foodhyd.2021.106782.
[18] CHUHUAN H, WEI L, ANALUCIA M, et al. Ions-induced gelation of alginate: mechanisms and applications[J]. International Journal of Biological Macromolecules, 2021, 177: 578-588.
doi: 10.1016/j.ijbiomac.2021.02.086 pmid: 33617905
[19] COSTA J M, MARQUES M A, PASTRANA M L, et al. Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio[J]. Food Hydrocolloids, 2018, 81: 442-448.
[20] 覃小红, 魏亮, 王荣武. 一种直线形槽状无针式静电纺丝装置及纺丝方法:106048749A[P]. 2016-10-26.
QIN Xiaohong, WEI Liang, WANG Rongwu. A linear groove needleless electrospinning device and spinning method: 106048749A[P]. 2016-10-26.
[21] 谈澄康. CS/PVA-海藻酸盐复合止血敷料的制备及性能研究[D]. 上海: 东华大学, 2020: 1-20.
TAN Chengkang. Preparation and properties study of CS/PVA-alginate composite hemostatic dressing[D]. Shanghai: Donghua University, 2020: 1-20.
[22] 汪希铭, 程凤, 高晶, 等. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306
WANG Ximing, CHENG Feng, GAO Jing, et al. The effect of cross-linking modification on the properties of chitosan/polyethylene oxide nanofiber membranes for dressing application[J]. Journal of Textile Research, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306
[23] 赵新哲, 王绍霞, 高晶, 等. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4): 33-41.
ZHAO Xinzhe, WANG Shaoxia, GAO Jing, et al. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes[J]. Journal of Textile Research, 2021, 42(4): 33-41.
[24] SHI Xinyu, SU Siyang, XU Jianxiong, et al. Preparation and properties of a multi-crosslinked chitosan/sodium alginate composite hydrogel[J]. Materials Letters, 2024. DOI:10.1016/j.matlet.2023:135414.
[25] JAVIER GG, ESTHER GC, NARESH M, et al. Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers[J]. Materials Letters, 2020, 270: 127662-127662.
[1] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[2] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[3] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
[4] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[5] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[6] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[7] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[8] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[9] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[10] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[11] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[12] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
[13] 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22.
[14] 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34.
[15] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!