纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 18-25.doi: 10.13475/j.fzxb.20240400101
• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇 下一篇
QIAN Yang, ZHANG Lu, LI Chenyang, WANG Rongwu()
摘要:
针对现有创伤敷料在促伤口愈合及防粘连方面存在的不足,采用静电纺丝技术,以去离子水为溶剂,选用生物相容性材料海藻酸钠进行制备,通过分析溶液电导率、纤维形态及直径分布,优化溶液配比,成功制得具有良好生物相容性、可降解性和高比表面积的海藻酸钠/聚环氧乙烷/聚乙烯吡咯烷酮复合纳米纤维膜。结果显示:当海藻酸钠与聚环氧乙烷质量比为1∶4,海藻酸钠/聚环氧乙烷总质量分数为4%,聚乙烯吡咯烷酮占溶质总质量的10%时,所得复合纳米纤维膜形貌均匀,纤维直径约为240 nm;经氯化钙质量分数为3.0%的无水乙醇溶液交联处理24 h后,复合纳米纤维膜的吸液倍率达到1 050.80%,质量损失率为40.63%,显著提升了其耐水性和结构稳定性,展现了在创伤修复领域的应用潜力。
中图分类号:
[1] |
MEHMET Evren Okur, IOANNIS D Karantas, PANORAIA I Siafaka, et al. Recent trends on wound management: new therapeutic choices based on polymeric carriers[J]. Asian Journal of Pharmaceutical Sciences, 2020, 15(6): 661-684.
doi: 10.1016/j.ajps.2019.11.008 pmid: 33363624 |
[2] | ZAHEDI P, REZAEIAN I, RANAEI-SIADAT SO, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J]. Polymers for Advanced Technologies, 2010.DOI:10.1002/pat.1625. |
[3] | 朱鹏, 张兴群, 王云龙, 等. 海藻酸盐医用敷料研究进展[J]. 上海纺织科技, 2020, 48(11): 13-18. |
ZHU Peng, ZHANG Xingqun, WANG Yunlong, et al. Progress in research on alginate medical dressings[J]. Shanghai Textile Science & Technology, 2020, 48(11): 13-18. | |
[4] | 吴洋, 刘方恬, 曹孟杰, 等. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(3): 8-16. |
WU Yang, LIU Fangtian, CAO Mengjie, et al. Research progress on biomass fiber medical dressings[J]. Journal of Textile Research, 2022, 43(3): 8-16. | |
[5] | 何劲, 陈莉, 刘玉森. 静电纺丝在多组分医用敷料中的应用及进展[J]. 纺织科技进展, 2020(7): 1-4. |
HE Jin, CHEN Li, LIU Yusen. Application and progress of electrospinning in multicomponent medical dressings[J]. Advances in Textile Technology, 2020(7): 1-4. | |
[6] | 刘鹏. 静电纺丝在生物医用材料领域的应用综述[J]. 山东纺织经济, 2020(4): 26-28, 39. |
LIU Peng. A review of the application of electrospinning in the field of biomedical materials[J]. Shandong Textile Economy, 2020(4): 26-28,39. | |
[7] | ZHANG X, WANG Y, GAO Z, et al. Advances in wound dressing based on electrospinning nanofibers[J]. Journal of Applied Polymer Science, 2023.DOI:10.1002/app.54746. |
[8] | FERNANDO S P I, LEE W, HAN J E, et al. Alginate-based nanomaterials: fabrication techniques, properties, and applications[J]. Chemical Engineering Journal, 2020, 391: 123823-123823. |
[9] | ALEJANDRO H, ALJABALI A A A, VIJAY M, et al. Alginate: enhancement strategies for advanced applications[J]. International Journal of Molecular Sciences, 2022, 23(9): 4486-4486. |
[10] | VIVIANA U, NATALY M, FERNANDO A, et al. Bacterial alginate production: an overview of its biosynthesis and potential industrial production[J]. World Journal of Microbiology Biotechnology, 2017. DOI:10.1007/s11274-2017-2363-x. |
[11] | 马肖. 海藻酸钠纺丝原液粘度研究[J]. 纺织科学研究, 2016(9): 92-93. |
MA Xiao. Study on the viscosity of sodium alginate spinning solution[J]. Textile Science Research, 2016(9): 92-93. | |
[12] | 杨锦铸. 海藻酸钠基多级结构纳米纤维膜的制备与性能研究[D]. 青岛: 青岛大学, 2023: 1-20. |
YANG Jinzhu. Preparation and performance study of sodium alginate-based hierarchical nano fiber membranes[D]. Qingdao: Qingdao University, 2023: 1-20. | |
[13] | 王春红, 李明, 龙碧旋, 等. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(5): 16-22. |
WANG Chunhong, LI Ming, LONG Bixuan, et al. Preparation and properties of polyvinyl alcohol/sodium alginate/berberine medical dressings[J]. Journal of Textile Research, 2021, 42(5): 16-22. | |
[14] | TAEMEH A M, SHIRAVANDI A, KORAYEM A M, et al. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2019.115419. |
[15] | JANJA Mirtič, HELENA Balažic, ŠPELA Zupančič, et al. Effect of solution composition variables on electrospun alginate nanofibers: response surface analysis[J]. Polymers, 2019. DOI:10.3390/polym11040692. |
[16] | 査艳凤, 钱洁, 候大寅. CS/PVP复合纳米纤维膜的制备及其表征[J]. 安徽工程大学学报, 2015, 30(2): 75-79. |
ZHA Yanfeng, QIAN Jie, HOU Dayin. Preparation and characterization of CS/PVP composite nanofiber membranes[J]. Journal of Anhui University of Technology, 2015, 30(2): 75-79. | |
[17] | CHANEZ B, SYLVIE D, LAURENT P, et al. Advances on alginate use for spherification to encapsulate biomolecules[J]. Food Hydrocolloids, 2021. DOI:10.1016/j.foodhyd.2021.106782. |
[18] |
CHUHUAN H, WEI L, ANALUCIA M, et al. Ions-induced gelation of alginate: mechanisms and applications[J]. International Journal of Biological Macromolecules, 2021, 177: 578-588.
doi: 10.1016/j.ijbiomac.2021.02.086 pmid: 33617905 |
[19] | COSTA J M, MARQUES M A, PASTRANA M L, et al. Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio[J]. Food Hydrocolloids, 2018, 81: 442-448. |
[20] | 覃小红, 魏亮, 王荣武. 一种直线形槽状无针式静电纺丝装置及纺丝方法:106048749A[P]. 2016-10-26. |
QIN Xiaohong, WEI Liang, WANG Rongwu. A linear groove needleless electrospinning device and spinning method: 106048749A[P]. 2016-10-26. | |
[21] | 谈澄康. CS/PVA-海藻酸盐复合止血敷料的制备及性能研究[D]. 上海: 东华大学, 2020: 1-20. |
TAN Chengkang. Preparation and properties study of CS/PVA-alginate composite hemostatic dressing[D]. Shanghai: Donghua University, 2020: 1-20. | |
[22] |
汪希铭, 程凤, 高晶, 等. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306 |
WANG Ximing, CHENG Feng, GAO Jing, et al. The effect of cross-linking modification on the properties of chitosan/polyethylene oxide nanofiber membranes for dressing application[J]. Journal of Textile Research, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306 |
|
[23] | 赵新哲, 王绍霞, 高晶, 等. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4): 33-41. |
ZHAO Xinzhe, WANG Shaoxia, GAO Jing, et al. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes[J]. Journal of Textile Research, 2021, 42(4): 33-41. | |
[24] | SHI Xinyu, SU Siyang, XU Jianxiong, et al. Preparation and properties of a multi-crosslinked chitosan/sodium alginate composite hydrogel[J]. Materials Letters, 2024. DOI:10.1016/j.matlet.2023:135414. |
[25] | JAVIER GG, ESTHER GC, NARESH M, et al. Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers[J]. Materials Letters, 2020, 270: 127662-127662. |
[1] | 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43. |
[2] | 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53. |
[3] | 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80. |
[4] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[5] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
[6] | 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126. |
[7] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141. |
[8] | 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239. |
[9] | 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23. |
[10] | 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209. |
[11] | 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31. |
[12] | 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38. |
[13] | 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22. |
[14] | 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34. |
[15] | 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23. |
|