纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 190-197.doi: 10.13475/j.fzxb.20230804301

• 染整工程 • 上一篇    下一篇

丝织物精练阶段的碳足迹核算与评价

戴佳洋1, 胡亿丰1, 王雨静1, 伍冬平2, 卞幸儿3, 许建梅1,4()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.浙江丝绸科技有限公司, 浙江 杭州 310004
    3.浙江凯喜雅国际股份有限公司, 浙江 杭州 310004
    4.苏州大学 江苏省纺织印染节能减排与清洁生产工程中心, 江苏 苏州 215123
  • 收稿日期:2023-08-21 修回日期:2024-05-15 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 许建梅(1976—),女,副教授,博士。主要研究方向为生丝检测及医用生物材料。E-mail:xujianmei@suda.edu.cn
  • 作者简介:戴佳洋(2000—),男,硕士生。主要研究方向为纺织品碳足迹核算。
  • 基金资助:
    中国纺织工业联合会科技指导性项目(202105);中央外经贸发展专项资金(茧丝绸)项目(浙财建[2022]95号);江苏省纺织印染节能减排与清洁生产工程中心开放课题资助项目(Q811580722)

Carbon footprint accounting and evaluation during silk refining stage

DAI Jiayang1, HU Yifeng1, WANG Yujing1, WU Dongping2, BIAN Xinger3, XU Jianmei1,4()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Zhejiang Silk Technology Co., Ltd., Hangzhou, Zhejiang 310004, China
    3. Zhejiang Cathaya International Co., Ltd., Hangzhou, Zhejiang 310004, China
    4. Jiangsu Textile Printing and Dyeing Energy Conservation and Emission Reduction and Cleaner Production Engineering Center, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2023-08-21 Revised:2024-05-15 Published:2024-08-15 Online:2024-08-21

摘要:

针对丝织物精练阶段能耗高、污水化学需氧量高的问题,实地调研了该阶段的初级活动数据,建立了生产过程中共用数据拆分方法,给出了运输、污水处理等过程的碳足迹核算方法,定量分析了精练阶段的碳足迹,以确定合理的节能减排建议。结果表明:非弹力织物采用方槽和星形架精练的碳足迹分别为35.06和37.47 kg CO2e/(100 m),弹力织物相应的碳足迹分别为57.60和59.99 kg CO2e/(100 m);非弹力织物主要的排放源依次是蒸汽使用、甲烷排放和化学品使用,占比分别为47.88%、35.52%和10.59%;弹力织物主要的排放源是天然气、蒸汽、甲烷、化学品,占比分别为34.63%、29.52%、21.91%和6.53%。通过回收利用污水处理中产生的甲烷、改进污水处理工艺、提高定形整理的加工效率等手段可有效地减少碳排放。

关键词: 精练, 丝织物, 碳足迹, 污水处理, 生命周期评价

Abstract:

Objective In alignment with the implementation of the national dual-carbon policy, the silk industry, as one of the distinctive sectors within our country, has an urgent need for the quantification of the carbon footprint associated with silk textiles. This imperative undertaking aims to formulate production processes that are inherently more eco-friendly and carbon-efficient. Within the multifaceted realm of silk manufacturing, the refining phase holds particular significance, thereby rendering an investigation into its carbon footprint, an indispensably requisite endeavor.

Method A methodology was devised for the dissection of electricity consumption within various stages and processing techniques of the refining process. Furthermore, a computational framework was introduced to account for carbon emissions arising from the transportation of raw materials and auxiliary substances, alongside direct greenhouse gas emissions resultant from wastewater treatment. By harnessing primary activity data garnered from on-site investigations, a comprehensive assessment of the carbon footprint(CFP) pertaining to the refining phase has been conducted.

Results The study established systematic boundaries for two distinct refining processes and the methodologies and equations employed for carbon footprint calculation were elucidated, accompanied by an enumeration of greenhouse gas emission factors pertinent to various materials or energy sources utilized during the calculation process. The distribution of carbon footprints was expounded from the vantage points of diverse inputs and processing stages. The outcome of the calculations reveals that for non-elastic fabrics, the carbon footprints for the rectangular tank refining and star-shaped frame refining processes were 35.06 and 37.47 kg CO2e/(100 m), respectively. Concerning elastic fabrics, the carbon footprints for the two processing techniques were 57.60 kg CO2e/(100 m) and 59.99 kg CO2e/(100 m), respectively. From an input-output perspective, with respect to non-elastic fabrics, the predominant sources of emissions in descending order were steam 47.88%), direct methane emissions (35.52%), and chemical usage (10.59%). For elastic fabrics, the major emission sources in descending order are natural gas (34.63%), steam (29.52%), direct methane emissions (21.91%), and chemicals (6.53%). Analyzing the processes, for non-elastic fabrics, the refining process (56.08%) and wastewater treatment (37.63%) constitute the most substantial contributors to carbon emissions. For elastic fabrics, the shaping and finishing process (38.33%), refining process (34.57%), and wastewater treat-ment (23.21%) were found to be the most carbon-intensive stages. Sensitivity analysis indicated that within a 95% confidence interval, variations in methane correction factors result in fluctuations of ±9.93% (non-elastic fabric degummed using rectangular tank),±8.13% (non-elastic fabric degummed using star-shaped frame),±6.04% (elastic fabric degummed using rectangular tank), and ±5.08% (elastic fabric using star-shaped frame) with regard to total carbon emissions.

Conclusion The findings of this study demonstrate that the CFP of the star-shaped frame refining process is slightly larger than that of the rectangular tank refining process. Moreover, the shaping and finishing process of elastic fabrics exhibits a substantial consumption of natural gas, leading to a significantly higher CFP when compared to non-elastic fabrics. Within the refining phase, the primary sources of carbon emissions are steam, natural gas, and direct methane emissions resulting from wastewater treatment. Mitigation of carbon emissions can be effectively achieved through measures such as increasing the reuse frequency of refining hot water, enhancing the processing efficiency of shaping and finishing, recovering and utilizing methane generated in wastewater treatment, and adopting non-overloaded oxygen-consuming modes.

Key words: refining, silk fabric, carbon footprint, wastewater treatment, life cycle assessment

中图分类号: 

  • TS147

图1

丝织物精练阶段系统边界图"

表1

精练阶段中能源、物料投入的GHG排放因子"

投入 单位 排放因子 来源
kg CO2e/(kW·h) 0.532 国家公布数据
天然气 kg CO2e/m3 2.47 T/CNTAC 11—2018
运输 kg CO2e/(km·t) 0.096 7 文献[10]
蒸汽 kg CO2e/MJ 0.074 2 文献[11]
纯碱 kg CO2e/kg 1.875 文献[12]
冷醋酸 kg CO2e/kg 1.34 文献[12]
双氧水 kg CO2e/kg 1.14 Ecoinvent数据库
精练剂 kg CO2e/kg 1.85 文献[13]

图2

丝织物的各类输入输出碳足迹分布图"

图3

丝织物的各类输入输出碳足迹的百分比图"

图4

丝织物的各个工序碳足迹的柱状图和百分比图"

[1] LIU S Y, LIU H, MENG Y D, et al. Review of carbon emission and carbon neutrality in the life cycle of silk products[J]. Fibres & Textiles in Eastern Europe, 2022, 30(2): 1-7.
[2] GIACOMIN A M, GARCIA J B, ZONATTI W F, et al. Silk industry and carbon footprint mitigation[J]. IOP Conference Series: Materials Science and Engineering, 2017, 254(19): 52-65.
[3] LI Y, WANG Y, HE Q, et al. Calculation and evaluation of carbon footprint in mulberry production: a case of Haining in China[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 58-61.
[4] BARCELOS S M B, SALVADOR R, GUEDES M D, et al. Opportunities for improving the environmental profile of silk cocoon production under Brazilian conditions[J]. Sustainability, 2020, 12(8): 24-27.
[5] ASTUDILLO MF, THALWITZ G, VOLLRATH F, et al. Life cycle assessment of Indian silk[J]. Journal of Cleaner Production, 2014, 81: 62-65.
[6] 许建梅, 潘璐璐, 伍冬平, 等. 生丝传统检验与电子检测的碳足迹核算与评价[J]. 纺织学报, 2023, 44(4): 38-45.
XU Jianmei, PAN Lulu, WU Dongping. Carbon footprint accounting and evaluation of traditional and electronic testing of raw silk[J]. Journal of Textile Research, 2023, 44(4): 38-45.
[7] 蒋婷, 陈泽勇, 姚婷婷, 等. 香云纱面料碳足迹评价[J]. 印染, 2012, 38(8): 39-41.
JIANG Ting, CHEN Zeyong, YAO Tingting, et al. Carbon footprint evaluation of Xiangyun fabric[J]. China Dyeing & Finishing, 2012, 38 (8): 39-41.
[8] 任银铒, 阴镜羽, 王晓蓬, 等. 丝绸纺织品的生命周期评价[J]. 消费导刊, 2016, 66(10): 33-35.
REN Yiner, YIN Jingyu, WANG Xiaopeng, et al. Life cycle assessment of silk textiles[J]. Consumer Guide, 2016, 66 (10): 33-35.
[9] 姜建堂, 孙洋洋, 崔芽芽, 等. 蚕丝精练废水处理及回用研究[J]. 蚕业科学, 2021, 47(5): 496-500.
JIANG Jiantang, SUN Yangyang, CUI Yaya, et al. Research on the treatment and reuse of silk scouring wastewater[J]. Sericulture Science, 2021, 47 (5): 496-500.
[10] 李艳丽, 吕锦旭, 李晓越. 碳中和背景下低碳运输工具比选研究[J]. 交通节能与环保, 2021, 17(4): 1-8, 30.
LI Yanli, LÜ Jinxu, LI Xiaoyue. Research on the comparison and selection of low carbon transport vehicles in the context of carbon neutrality[J]. Transportation Energy Conservation and Environmental Protection, 2021, 17 (4): 1-8, 30.
[11] FRANK B T, ANTOINE H X, BJARNE C T. Carbon footprint analysis of mineral fertilizer production in Europe and other world regions[C]// Proceedings of the 10th International Conference on Life Cycle Assessment of Food. Ireland Dublin:Nicholas M Holden, 2016: 24-32.
[12] 李昕. 纺织服装产品工业碳足迹核算中若干关键问题的研究[D]. 上海: 东华大学, 2014: 76-80.
LI Xin. Research on several key issues in carbon footprint accounting of textile and clothing products industry[D]. Shanghai: Donghua University, 2014: 76-80.
[13] 杨自平, 张建春, 张华, 等. 基于PAS2050规范的大麻纤维产品碳足迹测量分析[J]. 纺织学报, 2012, 33(8): 140-144.
YANG Ziping, ZHANG Jianchun, ZHANG Hua, et al. Carbon footprint measurement analysis of hemp fiber products based on PAS2050 specification[J]. Journal of Textile Research, 2012, 33 (8): 140-144.
[1] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[2] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[3] 许建梅, 潘璐璐, 伍冬平, 卞幸儿, 胡亿丰, 戴佳洋, 王雨静. 生丝传统检验与电子检测的碳足迹核算与评价[J]. 纺织学报, 2023, 44(04): 38-45.
[4] 章耀鹏, 沈忱思, 徐晨烨, 李方. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 42(08): 24-33.
[5] 陈俊良, 乌婧, 王华平, 杨建平. 水环境中纤维微塑料去除技术研究展望[J]. 纺织学报, 2021, 42(06): 18-25.
[6] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[7] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[8] 宋慧君, 翟亚丽, 钞意元, 朱超宇. 蚕丝织物的栀子蓝色素染色[J]. 纺织学报, 2020, 41(06): 81-85.
[9] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[10] 郑宏飞, 汪瑞琪, 汪庆, 朱莹, 许云辉. 氧化壳聚糖改性抗菌蚕丝织物的制备及其性能[J]. 纺织学报, 2020, 41(05): 121-128.
[11] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr(VI)和Pb(II)的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
[12] 江华, 张志恒, 蔡金芳, 陈维国, 崔志华, 孙岩峰. 芳伯胺染料对蚕丝织物的重氮化-偶合染色及工艺调控[J]. 纺织学报, 2019, 40(11): 100-105.
[13] 叶嘉浩, 王莉莉, 吴明华, 郭文登, 汪可豪, 陈妮. 蚕丝织物同花同色双面数码喷墨印花上浆工艺[J]. 纺织学报, 2019, 40(10): 92-97.
[14] 张悦, 胡丹玲, 任金娜, 李青. 棉织物低温近中性一浴一步法练漂[J]. 纺织学报, 2019, 40(09): 83-90.
[15] 张兰河, 张明爽, 高伟围, 李正, 贾艳萍, 高敏, 凌良雄. 铝酸钴/蜂窝陶瓷催化剂的制备及其在印染废水处理中的应用[J]. 纺织学报, 2019, 40(03): 125-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!