纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 198-204.doi: 10.13475/j.fzxb.20230302901

• 染整工程 • 上一篇    下一篇

图案化致热涤纶医用绷带的制备及其性能

项雪雪1, 刘娜1, 郭佳祺1, 高晶1(), 王璐1, 胡修元2   

  1. 1.东华大学 纺织学院, 上海 201620
    2.振德医疗用品股份有限公司, 浙江 绍兴 312035
  • 收稿日期:2023-03-14 修回日期:2024-03-28 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 高晶(1978—),女,教授,博士。主要研究方向为生物医用纺织品。E-mail:gao2001jing@dhu.edu.cn
  • 作者简介:项雪雪(1998—),女,博士生。主要研究方向为热管理纺织品。
  • 基金资助:
    国家自然科学基金项目(31870935)

Preparation and performance of patterned thermal polyester medical bandage

XIANG Xuexue1, LIU Na1, GUO Jiaqi1, GAO Jing1(), WANG Lu1, HU Xiuyuan2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Zhende Medical Co., Ltd., Shaoxing, Zhejiang 312035, China
  • Received:2023-03-14 Revised:2024-03-28 Published:2024-08-15 Online:2024-08-21

摘要:

为探究不同分散剂对电气石分散液的分散性,以实现制备具有致热功能的医用绷带,分别以羧甲基纤维素钠、多聚磷酸钠、十二烷基苯磺酸钠和聚乙烯吡咯烷酮为分散剂,制备超细电气石粉末分散液,探究了电气石粉末的最佳分散工艺。使用丝印网框涂层工艺分别制备了点状、条形状和辐射状的图案化致热涤纶医用绷带,并分析其致热性能、力学性能及舒适性能。结果表明:当分散剂为羧甲基纤维素钠,质量分数为1.0%时,电气石分散液最为均匀稳定;绷带经图案化涂层后具有较好的致热性,点状、条形状和辐射状涂层绷带的温升值分别达到2.3、3.3、3.5 ℃; 与未处理绷带相比,图案化涂层绷带的断裂强力、断裂伸长率及顶破强力均有所提高,透湿性改善;透气率虽有所降低,但仍保持在280~300 mm/s之间;抗弯刚度增加,但相较于全涂层绷带其柔软性显著改善,在提供致热功能的同时,保证了使用舒适性。

关键词: 医用绷带, 致热绷带, 图案化涂层工艺, 电气石, 远红外致热, 医用纺织品

Abstract:

Objective The objective of this research is to develop far-infrared functional medical bandage products with excellent thermogenic effect. The functional bandage is expected to provide temperature to the wound surface hence accelerating the blood circulation of the skin around the wound surface, and make the blood vessels of the local skin dilate thus playing an anti-inflammatory and pain-relieving role and promoting the healing of the wound surface.

Method Based on the principle of far-infrared thermogenic radiation, tourmaline powder was selected as far-infrared thermogenic material. The best dispersion process of the carbide powder with sodium carboxylmethyl cellulose, sodium polyphosphate, sodium dodecylbenzene sulfonate were developed. The patterned bandage was prepared by patterned coating on polyester medical bandage, and the patterns include dotted, linear and radial configurations for the thermogenic bandage. Firstly, the optimal dispersion process of tourmaline powder was investigated by with settling time, settling height, average particle size and degree of polydispersity as indicators. Temperature rising of different patterned thermogenic bandages was evaluated by radiation temperature rise method, and the physical properties were compared with untreated bandage and fully coated bandage respectively.

Results When sodium carboxymethyl cellulose was used as dispersant with mass fraction being 1.0%, the tourmaline suspension has the best stability, the particles are more uniformly distributed and the dispersion effect was the best. The results of settling time, settling height, average particle size and polydispersity index of tourmaline dispersion with different dispersants and dispersant dosages were discussed. After 10 min of irradiation by infrared lamp, the surface temperature of pattern-coated bandages were higher than that of the untreated bandages, among which the temperature rise of the radial and strip coated bandages were 3.5 ℃ and 3.3 ℃, respectively. The temperature rise of dot coated bandage was 2.3 ℃, the temperature rise curves of the three pattern-coated bandages indicated that the tourmaline powder exert an excellent far-infrared thermogenic effect after the pattern-coating treatment on the bandage surface. Compared with the untreated bandage, the breaking strength, elongation at break and top breaking strength of the pattern-coated bandages increased, and the moisture permeability slightly improved. The air permeability was decreased, but still remained between 280-300 mm/s. The bending length and bending stiffness of the pattern-coated bandages was increased, but compared with the fully coated bandage, the softness of the bandage is significantly improved after the pattern-coating treatment, ensuring the comfort of the thermogenic bandage in the process of application.

Conclusion Tourmaline powder with 1.0% sodium carboxymethyl cellulose dispersion demonstrates the best and most stable dispersion effect, with uniform particle size, suitable for creating far-infrared functional finishing solution. Due to the excellent far-infrared radiation characteristics, the pattern-coated bandage containing tourmaline powder shows an excellent thermogenic effect, the thermogenic effect of different patterns of bandage varies. The combination of tourmaline and bandage with pattern-coating process can provide the bandage with far-infrared thermogenic function while ensuring the comfort of the bandage with good thermal effect. This work proved the feasibility of preparing thermogenic bandages by patterned coating process, thus providing a theoretical basis and practical foundation for the further exploration and production of clinically usable thermogenic bandages.

Key words: medical bandage, thermogenic bandage, pattern-coating process, tourmaline, far-infrared thermogenic, medical textile

中图分类号: 

  • TS195.6

表1

分散剂对电气石分散性能的影响"

分散剂
种类
沉降时
间/h
沉降高
度/cm
平均粒
径/μm
PDI值
1.8±0.4 1.5±0.05 5.708±0.138 0.476±0.026
PVP 2.1±0.5 1.4±0.02 5.920±0.199 0.485±0.015
SDBS 26.9±1.0 1.1±0.03 2.232±0.232 0.254±0.020
SP 36.0±2.0 1.0±0.01 1.924±0.124 0.401±0.010
CMC 47.0±0.7 0.8±0.03 1.232±0.132 0.005±0.001

图1

分散剂对电气石分散效果的影响"

图2

分散剂质量分数对电气石分散效果的影响"

图3

分散剂CMC与电气石粉体的红外光谱"

图4

图案化涂层绷带的外观图"

图5

图案化涂层绷带温升曲线"

表2

整理工艺对绷带物理力学性能的影响"

整理工艺 断裂强
力/N
断裂伸长
率/%
顶破强
力/N
透气率/
(mm·s-1)
透湿率/
(g·m-2·h-1)
弯曲长度/
cm
抗弯刚度/
(mN·cm)
未整理 331.50±14.30 165.30±6.29 197.90±19.59 443.76±13.56 97.17±13.77 1.48±0.08 1.19±0.22
点状涂层 355.00±12.20 178.32±7.08 220.50±13.26 280.86±5.86 103.69±4.43 1.84±0.04 2.01±0.12
条形涂层 352.60±10.30 188.58±6.54 239.23±9.37 288.00±7.35 108.83±7.27 1.95±0.11 2.57±0.09
辐射涂层 354.60±14.78 175.41±5.74 231.20±12.09 290.63±2.77 105.37±4.53 2.02±0.08 2.46±0.23
全涂层 365.80±10.04 228.63±6.92 273.80±6.98 85.98±1.81 111.07±1.95 2.23±0.07 3.68±0.18

图6

涂层前后绷带的水接触角"

[1] 李彦, 王富军, 关国平, 等. 生物医用纺织品的发展现状及前沿趋势[J]. 纺织导报, 2020(9): 28-37.
LI Yan, WANG Fujun, GUAN Guoping, et al. Development status and frontier trend of biomedical textiles[J]. China Textile Leader, 2020(9): 28-37.
[2] LI K, LIU N F, YU Z Y, et al. Heating and compression bandage treatment is effective for chronic lymphedema with dermatolymphangioadenitis-a case-controlled study[J]. Lymphatic Research and Biology, 2016.DOI:10.1089/lrb.2015.0054.
[3] SHAPOVAL E. Application of the thermally insulating medical bandage in complex treatment of patients with cold injury[J]. Orthopaedics,Traumatology and Prosthetics, 2015, 2: 48.
[4] 吴波, 汪泽幸, 李帅, 等. 保暖材料研究现状与发展前景[J]. 湖南工程学院学报(自然科学版), 2021, 31(1): 74-79.
WU Bo, WANG Zexing, LI Shuai, et al. Research status and development prospect of thermal mate-rials[J]. Journal of Hunan University of Engi-neering(Natural Science Edition), 2021, 31(1): 74-79.
[5] HAN X Y, MENG J P, LIU J, et al. Enhanced far infrared radiation properties of functional ceramics derived from iron ore tailings incorporating tourmaline particles[J]. Ceramics International, 2020.DOI:10.1016/j.ceramint.2020.11.247.
[6] 龚佳佳, 顾学平, 肖俊, 等. 纺织品远红外功能整理[J]. 针织工业, 2018(11): 78-80.
GONG Jiajia, GU Xueping, XIAO Jun, et al. Textile far-infrared function finishing[J]. Knitting Industries, 2018(11): 78-80.
[7] 吴波伟, 黄顺伟. 远红外纺织品的制备与应用[J]. 产业用纺织品, 2018, 36(1): 35-39.
WU Bowei, HUANG Shunwei. Preparation and application of far-infrared textiles[J]. Industrial Textiles, 2018, 36(1): 35-39.
[8] PAPACHARALAMBOUS M, KARVOUNIS G, KENANAKIS G, et al. The effect of textiles impregnated with particles with high emissivity in the far infrared on the temperature of the cold hand[J]. Journal of Biomechanical Engineering, 2019.DOI:10.1115/1.4042044.
[9] 吴继辉, 邹婉晴, 汤明竹, 等. 负离子远红外功能织物对乳腺增生大鼠模型的影响[J]. 纺织学报, 2019, 40(6): 69-73.
WU Jihui, ZOU Wanqing, TANG Mingzhu, et al. Effect of anion far infrared functional fabric on rat model of mammary gland hyperplasia[J]. Journal of Textile Research, 2019, 40(6): 69-73.
[10] 慕怡菲, 金子敏, 阎玉秀, 等. 远红外锦纶织物对乳腺肿瘤细胞增殖的影响[J]. 纺织学报, 2022, 43(5): 109-115.
MU Yifei, JIN Zimin, YAN Yuxiu, et al. Effects of far-infrared nylon fabric on the proliferation of breast tumor cells[J]. Journal of Textile Research, 2022, 43(5): 109-115.
[11] 吕爱菊. 电气石精细结构及其性能研究[D]. 天津: 河北工业大学, 2016: 4-7.
LÜ Aiju. Study on the fine structure and properties of calcium carbide[D]. Tianjin: Hebei University of Technology, 2016: 4-7.
[12] 肖建刚, 李峻峰, 邱克辉, 等. 电气石/壳聚糖复合纤维制备与表征[J]. 功能材料, 2012, 43(S1): 78-80.
XIAO Jiangang, LI Junfeng, QIU Kehui, et al. Preparation and characterization of tourmaline/chitosan composite fibers[J]. Function Materials, 2012, 43(S1): 78-80.
[13] ZHANG J S, DING H H. Preparation and properties of negative ion functional cotton knitted fabric[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 1-7.
[14] TIAN T H, WEI X D, ELHASSAN A, et al. Highly flexible, efficient, and wearable infrared radiation heating carbon fabric[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2020.128114.
[15] 秦芳芳, 彭有梅, 苏海波, 等. 鞣花酸纳米混悬剂的制备、表征及其体内药动学研究[J]. 中草药, 2022, 53(13): 3980-3990.
QIN Fangfang, PENG Youmei, SU Haibo, et al. Preparation and characterization of ellagagic acid nanosuspension and in vivo pharmacokinetic studies[J]. Chinese Herbal Medicine, 2022, 53(13): 3980-3990.
[16] 刘航, 柳建新, 孙迎胜, 等. 基于动态光散射下纳米二氧化硅分散性的影响因素研究[J]. 无机盐工业, 2022, 54(8): 74-79.
LIU Hang, LIU Jianxin, SUN Yingsheng, et al. Study on the influence of nanosilica dispersion under dynamic light scattering[J]. Inorganic Salt Industry, 2022, 54(8): 74-79.
[17] 戈强胜, 谭伟新, 王向钦, 等. 远红外纺织品评价指标研究[J]. 中国纤检, 2018(6): 132-134.
GE Qiangsheng, TAN Weixin, WANG Xiangqin, et al. Study on the evaluation index of far-infrared textiles[J]. China Fiber Inspection, 2018(6): 132-134.
[1] 席立锋, 蒋高明, 马丕波, 贾伟, 张红斌, 王佳冕, 夏风林, 张琦, 刘海桑. 体外膜肺氧合经编膜织物自适应张力的低损伤制备[J]. 纺织学报, 2024, 45(07): 1-9.
[2] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[3] 王曙东, 马倩, 王可, 谷元慧. 3D生物打印制备组织工程支架的研究进展[J]. 纺织学报, 2023, 44(03): 210-220.
[4] 刘蛟, 陈韶娟, 吴韶华. 丝素蛋白/聚左旋乳酸纳米纤维纱线肌腱补片的制备及其性能[J]. 纺织学报, 2022, 43(08): 60-66.
[5] 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7.
[6] 李田华, 李晶晶, 张克勤, 赵荟菁, 孟凯. 螺旋型人工血管内的血流动力学数值模拟[J]. 纺织学报, 2022, 43(03): 17-23.
[7] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[8] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
[9] 卢俊, 管晓宁, 林婧, 劳继红, 王富军, 李彦, 王璐. 人工韧带疲劳测试装置设计及其耐疲劳性能评价[J]. 纺织学报, 2021, 42(11): 71-76.
[10] 杨露, 薛涛, 孟家光, 杨豆豆. 3D打印柔性服装面料的负离子功能整理及其性能[J]. 纺织学报, 2021, 42(08): 102-108.
[11] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[12] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
[13] 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73.
[14] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[15] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!