纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 205-214.doi: 10.13475/j.fzxb.20231001001

• 染整工程 • 上一篇    下一篇

γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能

刘慧1,2,3,4, 李平1,2,3,4, 朱平1,2,3,4, 刘云1,2,3,4()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    3.青岛大学 新型防火阻燃材料开发与应用国家地方联合工程研究中心, 山东 青岛 266071
    4.青岛大学 青岛市阻燃纺织材料重点实验室, 山东 青岛 266071
  • 收稿日期:2023-10-07 修回日期:2024-04-29 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 刘云(1982—),女,教授,博士。主要研究方向为功能纤维及纺织品。E-mail:liuyun0215@126.com
  • 作者简介:刘慧(1991—),女,博士生。主要研究方向为阻燃纤维及纺织品。
  • 基金资助:
    国家自然科学基金重大项目(51991354)

Preparation and properties of flame retardant and antibacterial cotton fabrics treated by γ-urea-propyltriethoxysilane/phenylphosphonic acid

LIU Hui1,2,3,4, LI Ping1,2,3,4, ZHU Ping1,2,3,4, LIU Yun1,2,3,4()   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    3. National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao, Shandong 266071, China
    4. Qingdao Key Laboratory of Flame-Retardant Textile Materials, Qingdao, Shandong 266071, China
  • Received:2023-10-07 Revised:2024-04-29 Published:2024-08-15 Online:2024-08-21

摘要:

针对棉织物易燃烧、易为有害细菌的滋生提供适宜生长环境,给人们正常生活带来重大安全隐患和健康危害等问题,采用 γ-脲基丙基三乙氧基硅烷(TESPR)和苯基膦酸(PPOA),通过溶胶-凝胶法制备了阻燃抗菌棉织物。借助扫描电子显微镜、热重分析仪、锥型量热测试仪、万能材料试验机、织物透气仪等对制得的阻燃棉织物进行表征,研究了其阻燃性能、热稳定性能、力学性能、抗菌性能以及透气性能等。结果表明:TESPR/PPOA成功附着于棉织物表面,极限氧指数达到27.2%;TESPR/PPOA涂层阻燃整理棉织物初始热降解温度低于未处理棉织物,但高温区的残炭量增加,表明在低温区生成的残炭能够作为隔热屏障保护内部棉织物;此外,TESPR/PPOA在棉织物表面的沉积,在大幅度提升抗菌性能的同时,保留了较好的透气性。

关键词: 阻燃性能, 抗菌性能, 棉织物, γ-脲基丙基三乙氧基硅烷, 苯基膦酸, 功能性纺织品

Abstract:

Objective Cotton fabrics are extensively utilized for their softness and wearing comfort, but the flammability is a significant drawback. Reports indicate that the human casualties and financial losses caused by fires related to cotton fabrics are unimaginably high every year. Therefore, it is crucial to improve the flame-retardancy of cotton fabrics. Unfortunately, the most widely used halogen-containing flame retardants face restrictions due to the production of halogenated hydrocarbons when burned. In addition, cotton fabrics with a single flame-retardant function are no longer sufficient to meet normal application needs, and customers demand that flame-retardant cotton fabrics would also possess functions such as waterproofing, antibacterial properties, and UV resistance. Consequently, the development of additives to enhance the flame retardancy and antibacterial functions for cotton fabrics is essential.

Method γ-urea-propyltriethoxysilane (TESPR) and phenylphosphonic acid (PPOA) were utilized in the preparation of flame-retardant cotton fabrics using the sol-gel technique. The flame-retardant cotton fabrics were subsequently analyzed using various techniques, including scanning electron microscopy, thermogravimetric analysis, vertical flame test, cone calorimetry test, antibacterial activities, universal material testing machine, and fabric air permeability testing.

Results The results indicated that the TESPR-PPOA coating was successfully deposited on the surface of cotton fabrics. The thermogravimetric analysis revealed that although the initial thermal degradation temperature of TESPR/PPOA flame retardant cotton fabrics was lower compared with that of cotton fabrics, the char residues in the high-temperature zone were increased. Moreover, TESPR/PPOA flame retardant cotton fabrics was able to succeed a rapid self-extinguishment after the igniter was removed, with the afterflame time and the afterglow time being reduced to 0 s. Meanwhile, the damaged length of TESPR/PPOA flame retardant cotton fabrics obtained from vertical flame test was 8.1 cm, and the limiting oxygen index reached 27.2%. Compared with that of cotton fabrics, the peak heat release rate value of TESPR/PPOA flame retardant cotton fabrics decreased from 124 kW/m2 to 94 kW/m2, and the total heat release value decreased from 4.1 MJ/m2 to 3.6 MJ/m2. After the flame retardant treatment, smoke release was effectively mitigated. The total smoke production value of flame retardant fabrics was smaller than that of cotton fabrics. In addition, the antibacterial properties of TESPR/PPOA flame retardant cotton fabrics against E. coli and S. aureus were 99.83% and 99.28%. However, the mechanical properties of the flame retardant cotton fabrics were deteriorated severely due to the acidity of PPOA. The warp breaking force decreased from about 308 N to 242 N in the warp directions, and the weft breaking force decreased from about 329 N to 272 N in the weft directions. Therefore, the breaking force of TESPR/PPOA flame retardant cotton fabrics in the warp and weft directions was reduced by approximately 21.43% and 17.3% respectively compared with that of cotton fabrics. Fortunately, compared with that of cotton fabrics, the air permeability of TESPR/PPOA flame retardant cotton fabrics decreased from about 708.8 mm/s to 583.8 mm/s, reduced by only about 17.7%. Therefore, TESPR/PPOA flame retardant cotton fabrics retained better air permeability compared with that of cotton fabrics.

Conclusion The results presented above demonstrate that the deposition of TESPR/PPOA can endow better flame retardant effect and better antibacterial properties to cotton fabrics, while TESPR/PPOA flame retardant cotton fabrics maintain better air permeability compared with that of untreated cotton fabrics. Additionally, the TESPR/PPOA coating has a certain inhibitory effect on the peak heat release rate. However, it is worth noting that the mechanical properties of these flame retardant cotton fabrics experience a certain degree of reduction in tensile strength and the study did not investigate their wash durability. In future research, further optimization of the fabrication process is necessary to minimize the impact on the mechanical properties of the cotton fabrics, and it is also important to comprehensively explore the fabric characteristics such as water wash resistance to improve efficiency and broaden its potential applications in areas such as clothing, home furnishings, and decoration.

Key words: flame retardancy, antibacterial property, cotton fabric, γ-urea-propyltriethoxysilane, phenyl-phosphonic acid, functional fabric

中图分类号: 

  • TS195.2

图1

棉织物的SEM照片及表面元素分布图"

表1

阻燃整理前后棉织物在氮气氛围下的TG和DTG数据"

样品 T5%/
Tmax/
Rmax/
(%·min-1)
700 ℃时的
残炭量/%
原棉织物 318 355 25.2 8.8
TESPR阻燃整理棉织物 315 361 20.4 17.9
TESPR/PPOA阻燃
整理棉织物
223 288 11.8 31.6

图2

阻燃整理前后棉织物在氮气氛围下的TG和DTG曲线"

表2

阻燃整理前后棉织物在空气氛围下的TG和DTG数据"

样品 T5%/
第1阶段 第2阶段 700 ℃
时的残
炭量/
%
Tmax/
Rmax/
(%·
min-1)
Tmax/
Rmax/
(%·
min-1)
原棉织物 307 339 38.1 468 2.5 1.4
TESPR阻燃整
理棉织物
299 340 31.8 488 2.2 4.1
TESPR/PPOA阻
燃整理棉织物
234 283 7.7 496 2.0 4.7

图3

阻燃整理前后棉织物在空气氛围下的TG和DTG曲线"

图4

棉织物垂直燃烧后的数码与SEM照片及阻燃整理棉织物残炭的表面元素分布图"

表3

阻燃整理前后棉织物的垂直燃烧和极限氧指数测试结果"

样品 质量增加
率/%
续燃时
间/s
阴燃时
间/s
损毁长
度/cm
LOI值/
%
原棉织物 0.0 8±2 9±3 30±0 17.8
TESPR阻燃整
理棉织物
17.4±0.5 3±2 3±4 30±0 19.4
TESPR/PPOA
阻燃整理棉织物
17.8±0.6 0 0 8.1±1.2 27.2

图5

阻燃整理前后棉织物的热释放速率曲线"

表4

阻燃整理前后棉织物的微型量热测试结果"

样品 最大热释
放速率/
(W·g-1)
到达最大
热释放速
率温度/℃
总热释放/
(kJ·g-1)
热释放
能力/
(J·(g·
K)-1)
原棉织物 263±4 375 11.1±0.3 248±16
TESPR阻燃整
理棉织物
277±2 374 10.3±0.5 252±18
TESPR/PPOA
阻燃整理棉织物
106±4 280 5.0±0.2 95±13

图6

阻燃整理前后棉织物的HRR、THR曲线"

表5

阻燃整理前后棉织物CCT测试结果"

样品 点燃
时间/
s
最大热
释放
速率/
(kW·
m-2)
到达最
大热释
放速率
时间/s
总热
释放/
(MJ·
m-2)
总烟产
生量/
m2
平均热
释放速
率/
(kW·
m-2)
原棉织物 19 124 45 4.1 6.3 14.5
TESPR阻燃整
理棉织物
22 99 45 4.5 0.6 16.2
TESPR/PPOA
阻燃整理棉织物
16 94 35 3.6 0.1 13.0

图7

阻燃整理前后棉织物的COP和CO2P曲线"

图8

阻燃整理前后棉织物热降解过程中挥发产物的三维红外光谱图"

图9

阻燃整理前后棉织物在Tmax时的红外光谱图"

图10

阻燃整理前后棉织物对金黄色葡萄球菌和大肠杆菌的抗菌性能"

表6

阻燃整理前后棉织物经纬向的断裂强力、透气性和手感"

样品 断裂强力/N 透气率/
(mm·s-1)
悬垂性/
%
折皱回
复率/%
相对手
感值/%
挠度/
%
软度/
%
平滑度/
%
经向 纬向
原棉织物 308.0±19.0 329.0±21.0 708.8±11.1 15.8 75.0 0.0 32.6 62.8 49.5
TESPR阻燃整理棉织物 287.0±21.0 296.0±19.0 695.3±10.6 16.2 68.2 2.2 32.8 60.3 46.2
TESPR/PPOA阻燃整理棉织物 242.0±24.0 272.0±22.0 583.8±12.3 16.7 67.6 2.4 33.6 61.7 48.8
[1] 钱耀威, 殷连博, 李家炜, 等. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(9): 144-152.
QIAN Yaowei, YIN Lianbo, LI Jiawei, et al. Preparation and properties of flame retardant cotton fabrics by layer-by-layer self-assembly of polyvinylphosphonic acid and polyethlene poly-amine[J]. Journal of Textile Research, 2023, 44(9): 144-152.
[2] 邢亚林. 聚苯胺和氮化硼协效阻燃棉布的制备及性能研究[J]. 火灾科学, 2021, 30: 160-164.
XING Yalin. Preparation and properties of flame retardant cotton with polyaniline and boron nitride[J]. Fire Safety Science, 2021, 30: 160-164.
[3] 邓继勇, 柳芊, 董新理, 等. 新型氮-磷阻燃剂制备及其对棉织物的阻燃性能[J]. 纺织学报, 2017, 38(11): 97-101.
doi: 10.13475/j.fzxb.20170100705
DENG Jiyong, LIU Qian, DONG Xinli, et al. Preparation of a novel N-P flame retardant and its flame retardant properties in cotton fabric[J]. Journal of Textile Research, 2017, 38(11): 97-101.
doi: 10.13475/j.fzxb.20170100705
[4] LI S, HUANG J, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 2017, 5(1): 31-55.
[5] ZHANG Y, JING J, LIU T, et al. A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid)[J]. Chemical Engineering Journal, 2021, 411: 128493.
[6] 徐英俊, 王芳, 倪延朋, 等. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(2): 1-9.
XU Yingjun, WANG Fang, NI Yanpeng, et al. Research progress on flame-retardation and multifunctionalization of textiles[J]. Journal of Textile Research, 2022, 43(2): 1-9.
[7] ZHANG F X, GAO W W, JIA Y L, et al. A concise water-solvent synthesis of highly effective, durable, and eco-friendly flame-retardant coating on cotton fabrics[J]. Carbohydrate Polymers, 2018, 199: 256-265.
doi: S0144-8617(18)30639-8 pmid: 30143128
[8] 蒋琦, 刘云, 朱平, 等. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(2): 222-229.
JIANG Qi, LIU Yun, ZHU Ping, et al. Preparation and properties of flame retardant/anti-ultraviolet cotton fabrics with tea polyphenol based flame retardants[J]. Journal of Textile Research, 2023, 44(2): 222-229.
[9] SHI Q B, ZHANG H W, ZHANG H P, et al. Polydopamine/silver hybrid coatings on soda-lime glass spheres with controllable release ability for inhibiting biofilm formation[J]. Science China Materials, 2020, 63: 842-850.
[10] 张群潮, 蒋涛, 黄世强, 等. 硅烷偶联剂的作用机理、种类及其应用[C]// 2014硅橡胶材料技术应用与发展趋势研讨会论文集. 武汉: 湖北大学, 2014: 41-47.
ZHANG Qunchao, JIANG Tao, HUANG Shiqiang, et al. Action mechanism, types and application of silane coupling agents[C]// Proceedings of Symposium on Technology Application and Development Trend of Silicone Rubber Materials. Wuhan: Hubei University, 2014: 41-47.
[11] LIU Y, WANG Q Q, JIANG Z M, et al. Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 289-298.
[12] 张艳, 熊正权, 李晓楠, 等. 水相自组装生物基核壳膨胀型阻燃剂对聚乳酸的阻燃改性[J]. 高分子材料科学与工程, 2020, 36: 49-55.
ZHANG Yan, XIONG Zhengquan, LI Xiaonan, et al. Flame retardant modification of polylactic acid by bio-based core-shell intumescent flame retardant self-assembled in aqueous phase[J]. Polymeric Materials Science and Engineering, 2020, 36: 49-55.
[13] 李平阳, 付灿, 董玲玲, 等. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(6): 107-114.
LI Pingyang, FU Can, DONG Lingling, et al. Preparation and performance of flame retardant and hydrophobic cotton fabric[J]. Journal of Textile Research, 2022, 43(6): 107-114.
[14] 曾凡鑫, 秦宗益, 沈玥莹, 等. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(1): 103-111.
ZENG Fanxin, QIN Zongyi, SHEN Yueying, et al. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology[J]. Journal of Textile Research, 2021, 42(1): 103-111.
[15] 李平. 基于生物质材料阻燃棉织物的制备、性能及阻燃机理[D]. 青岛: 青岛大学, 2020: 54-58.
LI Ping. The preparation, properties and flame-retardant mechanism of flame retardant cotton fabric based on biomass materials[D]. Qingdao: Qingdao University, 2020: 54-58.
[16] 曲连艺, 刘江龙, 徐英俊, 等. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(2): 176-183.
QU Lianyi, LIU Jianglong, XU Yingjun, et al. Preparation and properties of mussel-inspired durable antimicrobial fabrics[J]. Journal of Textile Research, 2023, 44(2): 176-183.
[17] 张姣姣, 李雨洋, 刘云, 等. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(7): 31-38.
ZHANG Jiaojiao, LI Yuyang, LIU Yun, et al. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics[J]. Journal of Textile Research, 2021, 42(7): 31-38.
[18] KWASNIEWSKA D, CHEN Y L, WIECZOREK D, et al. Biological activity of quaternary ammonium salts and their derivatives[J]. Pathogens, 2020, 9: 459-467.
[19] LIU J, DONG C, WEI D, et al. Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt[J]. Fibers and Polymers, 2019, 7: 1368-1374.
[1] 王皓月, 胡亚宁, 赵健, 杨鹏. 基于蛋白质类淀粉样聚集的纤维表面功能化[J]. 纺织学报, 2024, 45(08): 1-9.
[2] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[3] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[4] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[5] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[6] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[7] 马逸平, 樊武厚, 胡晓, 王斌, 李林华, 梁娟, 吴晋川, 廖正科. 耐久型水性杂化无氟防水剂的制备及其性能[J]. 纺织学报, 2024, 45(06): 113-119.
[8] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[9] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[10] 薛宝霞, 杨色, 张春艳, 刘晶, 刘勇, 程伟, 张利, 牛梅. 聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能[J]. 纺织学报, 2024, 45(05): 129-137.
[11] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[12] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[13] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[14] 袁野, 张安莹, 魏丽菲, 高建伟, 陈咏, 王锐. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(04): 50-58.
[15] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!