纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 26-34.doi: 10.13475/j.fzxb.20240400901

• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇    下一篇

光动力抗菌水刺棉的染整一体化制备及其性能

吕子豪1, 徐慧慧1, 袁小红2, 王清清1, 魏取福1()   

  1. 1.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    2.闽江学院 服装与艺术工程学院, 福建 福州 350108
  • 收稿日期:2024-04-02 修回日期:2024-05-10 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 魏取福(1964—),男,教授,博士。主要研究方向为功能纳米纺织材料。E-mail:qfwei@jiangnan.edu.cn
  • 作者简介:吕子豪(2000—),男,硕士生。主要研究方向为光敏抗菌抗病毒纤维材料。
  • 基金资助:
    福建省中央引导地方科技发展专项项目(2022L3061);福建省省级科技创新重点项目(2022G02028)

Preparation and properties of photodynamic antimicrobial spunlaced cotton made by integrated dyeing and finishing

LÜ Zihao1, XU Huihui1, YUAN Xiaohong2, WANG Qingqing1, WEI Qufu1()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. College of Clothing and Art Engineering, Minjiang University, Fuzhou, Fujian 350108, China
  • Received:2024-04-02 Revised:2024-05-10 Published:2024-08-15 Online:2024-08-21

摘要:

为解决传统抗菌非织造用品防护性能差、制备成本高和潜在毒性大等问题,以水刺棉为基材,通过低分子质量壳聚糖改性、柠檬酸共价交联和光敏剂染整一体化负载工艺,制备了具有高效广谱、抗菌耐久、安全低毒和绿色低碳的光动力抗菌水刺棉。利用紫外/可见光分光光度计、傅里叶红外光谱仪、荧光光谱仪对光动力水刺棉的化学结构和光动力学性能进行表征,通过抗菌实验探究了不同接触时间下光动力水刺棉的抗菌性能与抗菌耐久性能。结果显示:光动力水刺棉在10 min光照下能够淬灭50%以上的1,3-二苯基异苯并呋喃,属于主导能量转移的Ⅱ型光动力机制,在15 min内杀灭99%以上的金黄色葡萄球菌,在60 min内杀灭90%以上的大肠杆菌,表明功能化的水刺棉具有优异的光动力抗菌特性;此外,光动力水刺棉经光漂白和水洗使役后仍具有显著的抗菌耐久性,均可满足生物医用材料对生物安全性的要求,具有大规模制备新一代光触媒非织造用品的应用潜力。

关键词: 水刺棉, 光动力微生物灭活, 壳聚糖胍盐, 抗菌性能, 染整一体化, 功能性纺织品

Abstract:

Objective The traditional antibacterial nonwovens are known for their inferior contact comfort, significant potential toxicity, unsatisfactory protective performance and high preparation cost. In this study, skin-friendly spunlaced cotton was selected as the substrate which were then coated by a mixture of low molecular weight chitosan, covalently crosslinked citric acid and photosensitizers. This material is featured efficient and extensive antimicrobial, green and low pollution, stable effect and superior biosafety.

Method Photodynamic antimicrobial spunlaced cotton fabric was prepared by covalent crosslinking and integration of dyeing and finishing. The chemical structure and photodynamic properties of photodynamic spunlaced cotton were characterized using UV-visible spectrophotometer, Fourier infrared spectrometer and fluorescence spectroscopy. The antimicrobial performance and durability of the photodynamic spunlaced cotton were investigated by antimicrobial experiments under different contact periods.

Results The FT-IR spectra and water solubility test demonstrated the successful synthesis of chitosan guanidinium salt (GCS). The color space parameters and color depth curves confirmed that the color depth curves of the photodynamic spunlaced cotton matched the UV-visible absorption spectra of the corresponding photosensitizers, with color depth values of 3.55 and 4.72 for CHL-GCF(spunlaced cotton loaded with chitosan guanidinium salt and sodium copper chlorophyllin) and RB-GCF(spunlaced cotton loaded with chitosan guanidinium salt and rose bengal), respectively. The above results indicated that the cationic surface modified with chitosan guanidinium salt facilitated the loading of negatively charged photosensitizers. The dyeing rate and loading amount of sodium copper chlorophyllin (CHL) and rose bengal (RB) on the GCF surface were further determined by measuring the absorbance of the dye solution before and after the photosensitiser staining and the washing residual solution. The staining rates of CHL-GCF and RB-GCF reached 95.78% and 96.46%, respectively, and the loading amounts of CHL-GCF and RB-GCF after washing were 18.57 mg/g and 17.24 mg/g, respectively. The anionic photosensitiser and actionized spunlaced cotton relied on electrostatic interactions to achieve relatively excellent upstaining and loading effects under salt-free dyeing. The results demonstrated that the photodynamic spunlaced cotton killed more than 99% of S. aureus in 15 minutes and more than 90% of E. coli in 60 min, as well as less potential toxicity to cells, which met the relevant requirements for biomedical materials. Finally, the breaking elongation property, air permeability, water vapor transmissibility and UV resistance of photodynamic spunlaced cotton were investigated. Compared with NCF, the breaking strength retention rate of GCF, CHL-GCF and RB-GCF was approximately 70%. The air permeability and water vapour transmission rate of the photodynamic spunlaced cotton were reduced to 1 442.92 mm/s and 2 475.8 g/(m2·d), respectively, by approximately 15% in both cases. The UV resistance coefficients reached 32.26±1.15 and 19.78±0.48, respectively, with certain UV blocking ability.

Conclusion The spunlaced cotton with photodynamic microbial inactivation effect was successfully developed by adopting spunlaced cotton as the substrate, modified by covalent cross-linking with chitosan guanidinium salt, and then loaded with the photosensitiser chlorophyll copper sodium salt or rose bengal red by salt-free dyeing method. Under the simulated sunlight conditions, the photodynamic spunlaced cotton eliminated over 99% of S. aureus in 15 min, and over 90% of E. coli in 60 min, exhibiting good efficient inactivation performance and usage durability. According to the relevant standards for testing textile physical properties and biosafety indicators, photodynamic spunlaced cotton met the corresponding performance requirements, indicating outstanding contact comfort and safety.

Key words: spunlaced cotton, photodynamic microbial inactivation, chitosan guanidinium salt, antimicrobial, integration of dyeing and finishing, functional textle

中图分类号: 

  • TS176

图1

壳聚糖胍盐的合成路线和红外光谱图"

图2

CHL和RB的标准曲线"

图3

光动力水刺棉的色度特征"

图4

光动力水刺棉的红外光谱和荧光光谱"

图5

光动力水刺棉的光动力学性能"

图6

光动力水刺棉的抗菌及耐久性能"

表1

光动力水刺棉的物理力学性能"

试样 断裂强力/N 透湿率/(g·m-2·d-1) 透气率/(mm·s-1) 紫外线防护系数
NCF 25.81±1.84 2 934.42±65.32 1 722.41±62.14 1.34±0.04
GCF 18.62±0.74 2 446.34±58.34 1 462.75±45.85 3.56±0.09
CHL-GCF 17.47±1.46 2 483.95±114.57 1 429.33±54.70 32.26±1.15
RB-GCF 17.52±0.92 2 467.65±85.62 1 456.51±34.65 19.78±0.48

图7

光动力水刺棉的生物安全性能"

[1] HONIGSBAUM M. Superbugs and us[J]. The Lancet, 2018. DOI:10.1016/s0140-6736(18)30110-7.
[2] 刘静. 水刺非织造布微胶囊整理技术的研究与应用[D]. 上海: 东华大学, 2021: 1-30.
LIU Jing. Research and application of microencapsulation finishing technology for spunlace nonwovens[D]. Shanghai: Donghua University, 2021: 1-30.
[3] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress on antimicrobial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[4] 王志辉, 徐羽菲, 郭豪玉, 等. 光动力抗菌技术在纺织品上的应用研究进展[J]. 纺织学报, 2021, 42(11): 187-196.
doi: 10.13475/j.fzxb.20200903610
WANG Zhihui, XU Yufei, GUO Haoyu, et al. Progress in the application of photodynamic antimicrobial technology on textiles[J]. Journal of Textile Research, 2021, 42(11): 187-196.
doi: 10.13475/j.fzxb.20200903610
[5] YAN B, BAO X, LIAO X, et al. Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 2132-2145.
[6] 沈慧颖, 吕子豪, 庄粟裕, 等. 表面沉积铜纳米颗粒的细菌纤维素/壳聚糖交联复合膜的制备及其抗菌性能研究[J]. 化工新型材料, 2021, 49(3): 168-172.
SHEN Huiying, LÜ Zihao, ZHUANG Suyu, et al. Preparation of bacterial cellulose/chitosan cross-linked composite film with copper nanoparticles deposited on the surface and its antimicrobial properties[J]. New Chemical Materials, 2021, 49(3): 168-172.
[7] SHEN L, JIANG J, LIU J, et al. Cotton fabrics with antibacterial and antiviral properties produced by a simple pad-dry-cure process using diphenolic acid[J]. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.154152.
[8] JO Y K, HEO S-J, PEREDO A P, et al. Stretch-responsive adhesive microcapsules for strain-regulated antibiotic release from fabric wound dressings[J]. Biomaterials Science, 2021, 9(15): 5136-5143.
doi: 10.1039/d1bm00628b pmid: 34223592
[9] ZHANG P, CHEN X, BU F, et al. Dual coordination between stereochemistry and cations endows polyethylene terephthalate fabrics with diversiform antimicrobial abilities for attack and defense[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9926-9939.
[10] YANG K, SHI J, WANG L, et al. Bacterial anti-adhesion surface design: surface patterning, roughness and wettability: a review[J]. Journal of Materials Science & Technology, 2022, 99: 82-100.
[11] 吕子豪, 廖师琴, 陈娟芬, 等. 光动力抗菌面料协同增效技术的研究进展[J]. 化工新型材料, 2023, 51(8): 238-244.
LÜ Zihao, LIAO Shiqin, CHEN Juanfen, et al. Research progress on synergistic technology of photodynamic antimicrobial fabrics[J]. New Chemical Materials, 2023, 51(8): 238-244.
[12] LI B, WANG D, LEE M M S, et al. Fabrics attached with highly efficient aggregation-induced emission photosensitizer: toward self-antiviral personal protective equipment[J]. ACS Nano, 2021, 15(8): 13857-13870.
doi: 10.1021/acsnano.1c06071 pmid: 34313425
[13] LAN J, WU Y, LIN C, et al. Totally-green cellulosic fiber with prominent sustained antibacterial and antiviral properties for potential use in spunlaced non-woven fabric production[J]. Chemical Engineering Journal, 2023.DOI:10.1016/j.cej.2023.142588.
[14] 沈慧颖. 细菌纤维素-二硫化钼基材料的制备及其光敏性能研究[D]. 无锡: 江南大学, 2022: 1-30.
SHEN Huiying. Preparation of bacterial cellulose-molybdenum disulfide-based materials and their photosensitive properties[D]. Wuxi: Jiangnan University, 2022: 1-30.
[15] 王雅梅. 纤维素基医用纺织敷料的制备及性能研究[D]. 上海: 东华大学, 2024: 1-30.
WANG Yamei. Preparation and properties of cellulose-based medical textile dressings[D]. Shanghai: Donghua University, 2024: 1-30.
[16] PAN Q, ZHOU C, YANG Z, et al. Preparation and characterization of chitosan derivatives modified with quaternary ammonium salt and quaternary phosphate salt and its effect on tropical fruit preservation[J]. Food Chemistry, 2022.DOI:10.1016/j.foodchem.2022.132878.
[17] SALAMA A, HASANIN M, HESEMANN P. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups[J]. Carbohydrate Polymers, 2020.DOI:10.1016/j.carbpol.2020.116363.
[18] ZHOU Z, ZHENG C, LIU Y, et al. Chitosan biguanide induced mitochondrial inhibition to amplify the efficacy of oxygen-sensitive tumor therapies[J]. Carbohydrate Polymers, 2022.DOI:10.1016/j.carbpol.2022.119878.
[19] ZHANG T, ZHANG S, QIAN W, et al. Reactive dyeing of cationized cotton fabric: the effect of cationization level[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(36): 12355-12364.
[20] WANG T, XU L, SHEN H, et al. Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose[J]. Cellulose, 2020, 27(2): 991-1007.
doi: 10.1007/s10570-019-02852-9
[1] 王皓月, 胡亚宁, 赵健, 杨鹏. 基于蛋白质类淀粉样聚集的纤维表面功能化[J]. 纺织学报, 2024, 45(08): 1-9.
[2] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[3] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[4] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[5] 马逸平, 樊武厚, 胡晓, 王斌, 李林华, 梁娟, 吴晋川, 廖正科. 耐久型水性杂化无氟防水剂的制备及其性能[J]. 纺织学报, 2024, 45(06): 113-119.
[6] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[7] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[8] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[9] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[10] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[11] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[12] 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27.
[13] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[14] 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27.
[15] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!