纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 35-43.doi: 10.13475/j.fzxb.20240400302
• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇 下一篇
LIU Jiawei1, JI Dongxiao1, QIN Xiaohong1,2()
摘要:
面对日益严重的空气污染,传统过滤材料的过滤效率低且过滤阻力大,静电纺纳米纤维材料具有高孔隙率、大比表面积等特性,过滤效率高且过滤阻力小,可广泛应用于空气过滤及个人防护等领域。为此,首先从加工方式方面综述了3种静电纺丝法,不同的方法可获得不同尺度的纤维;其次,从不同纳米纤维材料结构和功能化制备角度,系统综述了空气过滤纳米纤维材料的最新研究进展;最后对规模化制备及纺丝原理进行论述,并展望了未来发展趋势。研究认为:需要深入研究静电纺丝机制,进一步研究电场、溶液、纤维成形之间的影响机制与构效关系开发新技术,来实现静电纺纳米纤维材料的规模化宏量制备;在此基础上对其进行功能化改进,研发具备自清洁、抗菌和传感等功能的空气过滤纳米纤维材料,以提高其在空气过滤领域的应用价值。
中图分类号:
[1] | LI Juan, LAI Shengjie, GAO George F, et al. The emergence, genomic diversity and global spread of SA-RS-CoV-2[J]. Nature, 2021, 600(7889): 408-418. |
[2] | TURNER Jackson S, KIM Wooseob, KALAIDINA Elizaveta, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans[J]. Nature, 2021, 595(7867): 421-425. |
[3] | PLANAS Delphine, VEYER David, BAIDALIUK Artem, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization[J]. Nature, 2021, 596(7871): 276-280. |
[4] |
XUE Jiajia, WU Tong, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938 |
[5] | 杜琳, 陈文杰, 桂思, 等. 静电纺丝纳米纤维制备技术应用研究进展[J]. 轻纺工业与技术, 2022, 51(6): 110-113. |
DU Lin, CHEN Wenjie, GUI Si, et al. Research progress of electrospinning nanofiber preparation technology[J]. Light and Textile Industry and Technology, 2022, 51(6): 110-113. | |
[6] | 穆晓绮. 基于多物理场的熔融静电纺丝超细纤维成型机理研究[D]. 上海: 上海工程技术大学, 2021: 14-83. |
MU Xiaoqi. Research on forming mechanism of melt electrospinning microfiber based on multi-physical field[D]. Shanghai: Shanghai University of Engineering Science and Technology, 2021: 14-83. | |
[7] | 白洋. 熔融静电纺超细纤维的细化及其可控制备研究[D]. 上海: 东华大学, 2023: 37-51. |
BAI Yang. Study on refinement and controllable preparation of ultrafine fibers by melt electrostatic spinning[D]. Shanghai: Donghua University, 2023: 37-51. | |
[8] |
王灵晓, 徐桂龙, 唐敏, 等. 静电纺芳纶纳米纤维膜的制备及其过滤性能[J]. 现代纺织技术, 2023, 31(1): 136-144.
doi: 10.19398/j.att.202206047 |
WANG Lingxiao, XU Guilong, TANG Min, et al. Preparation and filtration performance of aramid nanofiber membrane by electrostatic spinning[J]. Advanced Textile Technology, 2023, 31(1): 136-144.
doi: 10.19398/j.att.202206047 |
|
[9] | WANG Cunmin, SONG Xinyi, LI Tian, et al. Biodegradable Electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592. |
[10] | 齐庆欢, 师晓含, 张庆, 等. 静电—气流接替牵伸纺制PAN亚百纳米纤维及参数探讨[J]. 上海纺织科技, 2023, 51(10): 82-85,94. |
QI Qinghuan, SHI Xiaohan, ZHANG Qing, et al. Study on the parameters of PAN nanofibers produced by electrostatic-pneumatic replacement drafting[J]. Shanghai Textile Science and Technology, 2023, 51(10): 82-85, 94. | |
[11] | 元苹平, 孙晓艳, 周玉嫚, 等. 基于气流雾化静电纺纳米纤维的制备及其空气过滤性能[J]. 山东化工, 2021, 50(11): 42-45. |
YUAN Pingping, SUN Xiaoyan, ZHOU Yuman, et al. Preparation and air filtration performance of nanofibers based on air atomization electrostatic spinning[J]. Shandong Chemical Industry, 2021, 50(11): 42-45. | |
[12] | WANG Shan, ZHAO Xinglei, YIN Xia, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. ACS Applied Materials and Interfaces, 2016, 8(36): 23985-23994. |
[13] | SHAO Weili, HAN Ruikai, NIU Jingyi, et al. Electrospun-SiO2-nanofiber-reinforced cellulose aerogel loaded with ZIF-67 for air filtration and formaldehyde adsorption[J]. Advanced Materials Technologies, 2024. DOI:10.1002/admt.202301395. |
[14] | WANG Antuo, LI Xianglong, HOU Teng, et al. High efficiency, low resistance and high temperature resistance PTFE porous fibrous membrane for air filtration[J]. Materials Letters, 2021. DOI:10.1016/j.matlet.2021.129831. |
[15] | PUTRI Witha Berlian Kesuma, SAUSAN Zakiya Nibras Sausan, ASRI Nining Sumawati Asri, et al. Characterization of electrospun polyvinylidene fluoride-loaded iron sand based Fe3O4 nanoparticles[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2023. DOI:10.1088/2043-6262/acbc70. |
[16] | BYEUNGGON Kim, YUNSEON Jang, JUHYEON Kim, et al. High-performance electrospun particulate matter (PM) filters embedded with self-polarizable te-tragonal BaTiO3 nanoparticles[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.138340. |
[17] | DILA Aydin-Aytekin, ELIFNUR Gezmis-Yavuz, ESR-A Buyukada-Kesici, et al. Fabrication and characterization of multifunctional nanoclay and TiO2embedded polyamide electrospun nanofibers and their applications at indoor air filtration[J]. Materials Science and Engineering: B, 2022. DOI:10.1016/j.mseb.2022.115675. |
[18] | 姚金波, 刘垚, 田文军, 等. 静电驻极PVDF-TiO2/Si3N4纳米纤维膜的制备及其空气过滤性能[J]. 天津工业大学学报, 2022, 41(2): 20-24,48. |
YAO Jinbo, LIU Yao, TIAN Wenjun, et al. Preparation and air filtration performance of electrostatic electret PVDF-TiO2/Si3N4 nanofiber membranes[J]. Journal of Tiangong University, 2022, 41 (2): 20-24, 48. | |
[19] | NI R, XU H, MA J, et al. Zeolite imidazole frame-work-8(ZIF-8) decorated keratin-based air filters with formaldehyde removal and photocatalytic disinfection performance[J]. Materials Today Chemistry, 2022.DOI:10.1016/j.mtchem.2021.100689. |
[20] | ZHANG Han, ZHANG Xiaowei, WANG Pengjun, et al. Laminated polyacrylonitrile nanofiber membrane codoped with boehmite nanoparticles for efficient electrostatic capture of particulate matters[J]. Nanotechnology, 2021. DOI:10.1088/1361-6528/abeadc. |
[21] |
LI Yuyao, CAO Leitao, YIN Xia, et al. Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM0.3[J]. Journal of colloid and interface science, 2020, 578: 565-573.
doi: S0021-9797(20)30742-6 pmid: 32544628 |
[22] | WANG Bin, SUN Zhiming, SUN Qing, et al. The preparation of bifunctional electrospun air filtration membranes by introducing attapulgite for the efficient capturing of ultrafine PMs and hazardous heavy metalions[J]. Environmental pollution (Barking, Essex: 1987), 2019, 249: 851-859. |
[23] | 万冬阳. 碳基纳米纤维异质结体系的构筑及其PM捕获性能的研究[D]. 郑州: 郑州大学, 2019: 21-56. |
WAN Dongyang. Construction of carbon-based nanofiber heterojunction system and its PM trapping performance[D]. Zhengzhou: Zhengzhou University, 2019: 21-56. | |
[24] | 李珂. 静电纺制备多功能耐高温空气过滤材料及其性能研究[D]. 上海: 东华大学, 2023: 25-43. |
LI Ke. Preparation and properties of multifunctional high temperature resistant air filtration materials by electrostatic spinning[D]. Shanghai: Donghua University, 2023: 25-43. | |
[25] | XIONG Jian, LI Ailin, WANG Liming, et al. Multiscale nanoarchitectured fibrous networks for high-performance, self-sterilization, and recyclable face masks[J]. Small, 2022. DOI:10.1002/smll.202105570. |
[26] | 张浩. 多功能静电纺纳米纤维在环境污染物去除中的应用研究[D]. 长春: 吉林大学, 2023: 14-28. |
ZHANG Hao. Research on the application of multifunctional electrostatic spinning nanofibers in the removal of environmental pollutants[D]. Changchun: Jilin University, 2023: 14-28. | |
[27] | ZHANG Shichao, LIU Hui, YIN Xia, et al. Tailoring mechanically robust poly(m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter[J]. Scientific Reports, 2017. DOI:10.1038/srep40550. |
[28] |
程博闻, 高鲁, 邓南平, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(12): 139-144.
doi: 10.13475/j.fzxb.20180801206 |
CHENG Bowen, GAO Lu, DENG Nanping, et al. Preparation and filtration properties of electrospun dendritic polylactic acid nanofiber membranes[J]. Journal of Textile Research, 2018, 39(12): 139-144.
doi: 10.13475/j.fzxb.20180801206 |
|
[29] | HUA Yuezhen, LI Yuyao, JI Zekai, et al. Dual-bionic, fluffy, and flame resistant polyamide-imide ultrafine fibers for high-temperature air filtration[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2022.139168. |
[30] |
孙少阳, 申莹, 王容容, 等. 静电纺聚乳酸纳米纤维的制备及其孔结构调控[J]. 中国塑料, 2023, 37(4): 67-73.
doi: 10.19491/j.issn.1001-9278.2023.04.011 |
SUN Shaoyang, SHEN Ying, WANG Rongrong, et al. Preparation and pore structure control of polylactic acid nanofibers by electrostatic spinning[J]. China Plastics, 2023, 37(4): 67-73.
doi: 10.19491/j.issn.1001-9278.2023.04.011 |
|
[31] | XIONG Junpeng, SHAO Weili, WANG Ling, et al. High-performance antihaze window screen based on multiscale structured polyvinylidene fluoride nanofibers[J]. Journal of Colloid and Interface Science, 2022, 607(1): 711-719. |
[32] | 宋岩, 熊健, 张弘楠, 等. 空气过滤用复合纳米纤维膜的制备及其性能[J]. 东华大学学报(自然科学版), 2020, 46(4): 10. |
SONG Yan, XIONG Jian, ZHANG Hongnan, et al. Preparation and properties of composite nanofiber membrane for air filtration[J]. Journal of Donghua University(Natural Science), 2020, 46(4): 10. | |
[33] | FU Xuewei, LIU Juejing, DING Chenfeng, et al. Building bimodal structures by a wettability difference-driven strategy for high-performance protein air-filters[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.125742. |
[34] | 刘允璞, 温小雪, 周智勇, 等. 空气过滤微纳米纤维膜的组合式制备及其性能[J]. 东华大学学报(自然科学版), 2023, 49(4): 23-29. |
LIU Yunpu, WEN Xiaoxue, ZHOU Zhiyong, et al. Composite preparation and properties of micro-nano fiber membrane for air filtration[J]. Journal of Donghua University(Natural Science), 2023, 49(4): 23-29. | |
[35] | GE Jing, LV Xujin, ZHOU Jianwei, et al. Multi-level structured polylactic acid electrospunfiber membrane based on green solvents for high-performance air filtration[J]. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125659. |
[36] | 殷妮, 刘福娟. 空气过滤用纳米纤维膜研究进展[J]. 现代纺织技术, 2021, 29(5): 26-36. |
YIN Ni, LIU Fujuan. Research progress of nanofiber membrane for air filtration[J]. Advanced Textile Technology, 2021, 29(5): 26-36. | |
[37] | WEI Zhimei, SU Qing, YANG Jie, et al. Highperformance filter membrane composed of oxidized poly (arylene sulfide sulfone) nanofibers for the highefficiency air filtration[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.126033. |
[38] | SU Qing, WEI Zhimei, WANG Xiaojun, et al. Electrospun composite membrane based on polyarylene sulfide sulfone/Ag/ZnO nanofibers for antibacterial effective PM2.5 filtration[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.51693. |
[39] | VICTOR Felix Swamidoss, KUGARAJAH Vaidhegi, BANGARU Mohan, et al. Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination[J]. Environmental Science and Pollution Research, 2021, 28(28): 37520-37533. |
[40] | WANG Fei, SI Yang, YU Jianyong, et al. Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration[J]. Advanced Functional Materials, 2021, 31(49): 1-9. |
[41] | JANG Sanha, JUNG Sungwoo, SONG Sehwan, et al. Preparation and characterization of multifunctional nanofibers containing metal-organic frameworks and Cu2O nanoparticles: particulate matter capture and antibacterial activity[J]. Environmental Science Nano, 2021, 8(5): 1226-1235. |
[42] | SHEN Ruimin, SHAO Zungui, CHEN Ruixin, et al. Fully bio-based zein/chitosan hydrochloride/phloretin bimodal fibrous membrane for high-performance and antibacterial air filtration based on green electrospinning[J]. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2024.126893. |
[43] | SHEN Ruimin, SHAO Zungui, XIE Junjie, et al. Biobased nanofibrous membrane via delayed-volatilizing green electrospinning for high-performance air filtration[J]. ACS Applied Polymer Materials, 2023, 5(10): 8559-8569. |
[44] | 郭朝阳, 陈江萍, 吴仁香, 等. 静电纺聚醚酰胺纳米纤维膜的制备及其空气过滤性能[J]. 厦门大学学报(自然科学版), 2023, 62(5): 766-773. |
GUO Chaoyang, CHEN Jiangping, WU Renxiang, et al. Preparation of polyetheramide nanofiber membrane by electrostatic spinning and its air filtration perfor-mance[J]. Journal of Xiamen University (Natural Science Edition), 2023, 62(5): 766-773. | |
[45] | YU Jia, TIAN Xu, XIN Binjie, et al. Preparation and characterization of PMIA nanofiber filter membrane for air filter[J]. Fibers and Polymers, 2021, 22(9): 2413-2423. |
[46] | WU Litao, ZHANG Qian, WANG Xuefang, et al. Electrospun polyethersulfone@MOF composite membranes for air cleaning and oilwater separation[J]. Journal of Environmental Chemical Engineering, 2023. DOI:10.1016/j.jece.2023.110044. |
[47] | KANG Yutang, CHEN Jiahao, FENG Shasha, et al. Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermallyoxidized PAN/PVP/SnO2 nanofiber membrane[J]. Journal of Membrane Science, 2022. DOI:10.1016/j.memsci.2022.120985. |
[48] |
LIU Suqi, RENEKER Darrell H. Droplet-jet shape parameters predict electrospun polymer nanofiber diameter[J]. Polymer, 2019, 168: 155-158.
doi: 10.1016/j.polymer.2019.01.082 |
[49] | 周智勇. 静电纺曲边碟形喷头的研制及其制备空气过滤膜的应用研究[D]. 上海: 东华大学, 2021: 22-63. |
ZHOU Zhiyong. Study on the development of a curved edge dish-shaped nozzle by electrostatic spinning and its application in the preparation of air filtration membrane[D]. Shanghai: Donghua University, 2021: 22-63. | |
[50] | XIONG Jian, LIU Ye, LI Ailin, et al. Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning[J]. Materials & Design, 2021. DOI:10.1016/j.matdes.2020.109247. |
[51] | LEI Sailing, WANG Liming, WANG Rongwu, et al. Controllable diameter of electrospun nanofibers based on the velocity of whipping jets for high-efficiency air filtration[J]. Science China Technological Sciences, 2022, 65(2): 481-489. |
[52] | 权震震, 王亦涵, 祖遥, 等. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(9): 39-45. |
QUAN Zhenzhen, WANG Yihan, ZU Yao, et al. Formation mechanism and film formation characteristics of electrostatic spinning jet with multi-curved noz-zle[J]. Journal of Textile Research, 2021, 42 (9): 39-45. |
[1] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[2] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
[3] | 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126. |
[4] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141. |
[5] | 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25. |
[6] | 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53. |
[7] | 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23. |
[8] | 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239. |
[9] | 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209. |
[10] | 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31. |
[11] | 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38. |
[12] | 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26. |
[13] | 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34. |
[14] | 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23. |
[15] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
|