纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 35-43.doi: 10.13475/j.fzxb.20240400302

• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇    下一篇

空气过滤用静电纺纳米纤维材料研究进展

刘嘉炜1, 季东晓1, 覃小红1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2024-04-01 修回日期:2024-04-29 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 覃小红(1977—),女,教授,博士。主要研究方向为静电纺丝。E-mail:xhqin@dhu.edu.cn
  • 作者简介:刘嘉炜(1990—),男,实验师,博士。主要研究方向为非织造材料与工程。
  • 基金资助:
    国家自然科学基金项目(51973027);山东省重点研发计划项目(2021CXGC011004);山东省重点研发计划项目(2023CXGC010610)

Research progress in electrospun nanofiber materials for air filtration

LIU Jiawei1, JI Dongxiao1, QIN Xiaohong1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2024-04-01 Revised:2024-04-29 Published:2024-08-15 Online:2024-08-21

摘要:

面对日益严重的空气污染,传统过滤材料的过滤效率低且过滤阻力大,静电纺纳米纤维材料具有高孔隙率、大比表面积等特性,过滤效率高且过滤阻力小,可广泛应用于空气过滤及个人防护等领域。为此,首先从加工方式方面综述了3种静电纺丝法,不同的方法可获得不同尺度的纤维;其次,从不同纳米纤维材料结构和功能化制备角度,系统综述了空气过滤纳米纤维材料的最新研究进展;最后对规模化制备及纺丝原理进行论述,并展望了未来发展趋势。研究认为:需要深入研究静电纺丝机制,进一步研究电场、溶液、纤维成形之间的影响机制与构效关系开发新技术,来实现静电纺纳米纤维材料的规模化宏量制备;在此基础上对其进行功能化改进,研发具备自清洁、抗菌和传感等功能的空气过滤纳米纤维材料,以提高其在空气过滤领域的应用价值。

关键词: 空气过滤, 静电纺丝, 纳米纤维材料, 规模化制备, 功能化

Abstract:

Significance With the acceleration of industrialization, air pollution is increasingly severe. The global outbreak of COVID-19 in 2019, along with the widespread transmission of diseases such as influenza A, influenza B, and mycoplasma pneumonia in recent years, has greatly impacted public health and safety. Developing industrial filters capable of filtering air pollution particles and personal protective materials isolating viruses is crucial. Electrospinning technology prepares air filtration nanofiber materials with unique nanofiber structures and high specific surface areas, enabling efficient capture and removal of fine particles and viruses with high filtration efficiency. Additionally, these materials possess excellent durability and stability, maintaining efficient filtration performance over prolonged use and can be widely applied in air purification filters and personal protective masks.

Progress Different scales of nanofibers can be obtained through melt-electrospinning, solution electrospinning, and airflow-assisted electrospinning. Melt-electrospinning melts the polymer by heating and then draws it into filaments through a high-voltage electrostatic field. The production speed is high, but it is only suitable for a small part of the polymer raw materials, and the fibers are thicker. Solution electrospinning dissolves polymer materials in organic solvents to form a polymer solution. Under the action of a high-voltage electrostatic field, the polymer molecules in the solution are stretched into fibers, and nanofibers with very small fineness can be prepared. However, the subsequent processing of organic solvents may cause environmental pollution and the output is small. Airflow-assisted electrospinning is based on electrospinning and injects airflow into the fiber formation area to assist stretching and control fiber formation. This method can control fiber diameter and shape, but the equipment is complex, process control is difficult, and the cost is high. Adding nanoscale particles to the spinning solution can roughen fiber surface, significantly increasing the material's specific surface area, filtration efficiency, and reducing filtration resistance. Constructing nanofiber structures resembling spider webs, dendrites, grooves, or bead chains can achieve similar effects. Adding functional ingredients or particles to the solution can confer properties such as high-temperature resistance, antibacterial, and antiviral effects on the material. To scale up nanofiber production, research on electrospinning mechanisms has been conducted, validating models with experimental results, significantly improving production yield through enhancing new needleless spinning devices.

Conclusion and Prospect Currently, the regenerative and reusable capabilities of electrospun air filtration nanofiber materials are limited, potentially leading to higher long-term operational costs. Materials often have low mechanical strength, making them susceptible to physical damage. Scaling up electrospinning production still faces challenges. Hence, there is a necessity for deeper investigations into electrospinning mechanisms, delving into the impact mechanisms and structure-property correlations involving electric fields, solutions, and fiber formation. For melt-electrospinning, it is necessary to control the interference of heating equipment on the high-voltage electric field to further improve the production speed and product stability. Solution electrospinning requires the development of environmentally friendly degradable materials or recyclable solvents on the basis of increasing yields to achieve environmentally friendly production. Airflow-assisted electrospinning requires optimized processes and equipment, reduced costs, and enhanced airflow control of fiber morphology to expand the range of applications. Moreover, achieving precise control over fiber morphology and material structure formation is imperative. It is crucial to develop novel technologies that enable efficient and stable large-scale production. Simultaneously, developing nanofiber materials with self-cleaning, antibacterial, and sensing functionalities to enhance their application value in the air filtration field is crucial. Combining novel nanofiber materials with fiber functional modification techniques can further expand the application fields of electrospun nanofiber materials. With continuous technological innovation and deeper research, the potential of electrospun nanofiber materials in the air filtration field will be more fully realized and applied.

Key words: air filtration, electrospinning, nanofiber material, large-scale production, functionalization

中图分类号: 

  • TS174.8

表1

常用于溶液静电纺丝的原料及其特点与应用"

聚合物原料 特点 应用
聚丙烯酸丁酯(PBA) 良好的拉伸性能和耐热性 纳米纤维膜和过滤材料
聚乳酸(PLA) 良好的生物降解性和生物相容性 医用纳米纤维材料和口罩等
聚酰胺(PA) 优异的力学性能和耐磨性 耐磨、高强度的静电纺丝纤维材料
聚醚醚酮
(PEEK)
耐化学腐蚀、耐高温性能良好 高温环境下的静电纺纤维材料,如空气过滤材料等
聚甲基丙烯酸甲酯(PMMA) 良好的耐候性和光学性能 透明、光学性能优异的静电纺纤维材料
聚醚砜(PES) 良好的化学稳定性和热稳定性 高温、耐化学腐蚀的静电纺纤维材料,如滤网、膜材料等
聚偏氟乙烯
(PVDF)
良好的耐磨性、耐化学性和耐候性,优异的电气性能和耐高温性 高性能的空气过滤材料,如高效过滤器和膜材料等
聚乙烯醇
(PVA)
良好的力学性能、耐磨性和耐化学性,同时易溶于水 在湿度较大的环境下使用的空气过滤材料,如湿式过滤器等

图1

不同粗糙表面结构的纳米纤维材料表面扫描电镜照片"

图2

不同结构的纳米纤维材料表面扫描电镜照片"

图3

具有串珠与裂纹结构的纳米纤维材料表面扫描电镜照片"

[1] LI Juan, LAI Shengjie, GAO George F, et al. The emergence, genomic diversity and global spread of SA-RS-CoV-2[J]. Nature, 2021, 600(7889): 408-418.
[2] TURNER Jackson S, KIM Wooseob, KALAIDINA Elizaveta, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans[J]. Nature, 2021, 595(7867): 421-425.
[3] PLANAS Delphine, VEYER David, BAIDALIUK Artem, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization[J]. Nature, 2021, 596(7871): 276-280.
[4] XUE Jiajia, WU Tong, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938
[5] 杜琳, 陈文杰, 桂思, 等. 静电纺丝纳米纤维制备技术应用研究进展[J]. 轻纺工业与技术, 2022, 51(6): 110-113.
DU Lin, CHEN Wenjie, GUI Si, et al. Research progress of electrospinning nanofiber preparation technology[J]. Light and Textile Industry and Technology, 2022, 51(6): 110-113.
[6] 穆晓绮. 基于多物理场的熔融静电纺丝超细纤维成型机理研究[D]. 上海: 上海工程技术大学, 2021: 14-83.
MU Xiaoqi. Research on forming mechanism of melt electrospinning microfiber based on multi-physical field[D]. Shanghai: Shanghai University of Engineering Science and Technology, 2021: 14-83.
[7] 白洋. 熔融静电纺超细纤维的细化及其可控制备研究[D]. 上海: 东华大学, 2023: 37-51.
BAI Yang. Study on refinement and controllable preparation of ultrafine fibers by melt electrostatic spinning[D]. Shanghai: Donghua University, 2023: 37-51.
[8] 王灵晓, 徐桂龙, 唐敏, 等. 静电纺芳纶纳米纤维膜的制备及其过滤性能[J]. 现代纺织技术, 2023, 31(1): 136-144.
doi: 10.19398/j.att.202206047
WANG Lingxiao, XU Guilong, TANG Min, et al. Preparation and filtration performance of aramid nanofiber membrane by electrostatic spinning[J]. Advanced Textile Technology, 2023, 31(1): 136-144.
doi: 10.19398/j.att.202206047
[9] WANG Cunmin, SONG Xinyi, LI Tian, et al. Biodegradable Electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592.
[10] 齐庆欢, 师晓含, 张庆, 等. 静电—气流接替牵伸纺制PAN亚百纳米纤维及参数探讨[J]. 上海纺织科技, 2023, 51(10): 82-85,94.
QI Qinghuan, SHI Xiaohan, ZHANG Qing, et al. Study on the parameters of PAN nanofibers produced by electrostatic-pneumatic replacement drafting[J]. Shanghai Textile Science and Technology, 2023, 51(10): 82-85, 94.
[11] 元苹平, 孙晓艳, 周玉嫚, 等. 基于气流雾化静电纺纳米纤维的制备及其空气过滤性能[J]. 山东化工, 2021, 50(11): 42-45.
YUAN Pingping, SUN Xiaoyan, ZHOU Yuman, et al. Preparation and air filtration performance of nanofibers based on air atomization electrostatic spinning[J]. Shandong Chemical Industry, 2021, 50(11): 42-45.
[12] WANG Shan, ZHAO Xinglei, YIN Xia, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. ACS Applied Materials and Interfaces, 2016, 8(36): 23985-23994.
[13] SHAO Weili, HAN Ruikai, NIU Jingyi, et al. Electrospun-SiO2-nanofiber-reinforced cellulose aerogel loaded with ZIF-67 for air filtration and formaldehyde adsorption[J]. Advanced Materials Technologies, 2024. DOI:10.1002/admt.202301395.
[14] WANG Antuo, LI Xianglong, HOU Teng, et al. High efficiency, low resistance and high temperature resistance PTFE porous fibrous membrane for air filtration[J]. Materials Letters, 2021. DOI:10.1016/j.matlet.2021.129831.
[15] PUTRI Witha Berlian Kesuma, SAUSAN Zakiya Nibras Sausan, ASRI Nining Sumawati Asri, et al. Characterization of electrospun polyvinylidene fluoride-loaded iron sand based Fe3O4 nanoparticles[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2023. DOI:10.1088/2043-6262/acbc70.
[16] BYEUNGGON Kim, YUNSEON Jang, JUHYEON Kim, et al. High-performance electrospun particulate matter (PM) filters embedded with self-polarizable te-tragonal BaTiO3 nanoparticles[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.138340.
[17] DILA Aydin-Aytekin, ELIFNUR Gezmis-Yavuz, ESR-A Buyukada-Kesici, et al. Fabrication and characterization of multifunctional nanoclay and TiO2embedded polyamide electrospun nanofibers and their applications at indoor air filtration[J]. Materials Science and Engineering: B, 2022. DOI:10.1016/j.mseb.2022.115675.
[18] 姚金波, 刘垚, 田文军, 等. 静电驻极PVDF-TiO2/Si3N4纳米纤维膜的制备及其空气过滤性能[J]. 天津工业大学学报, 2022, 41(2): 20-24,48.
YAO Jinbo, LIU Yao, TIAN Wenjun, et al. Preparation and air filtration performance of electrostatic electret PVDF-TiO2/Si3N4 nanofiber membranes[J]. Journal of Tiangong University, 2022, 41 (2): 20-24, 48.
[19] NI R, XU H, MA J, et al. Zeolite imidazole frame-work-8(ZIF-8) decorated keratin-based air filters with formaldehyde removal and photocatalytic disinfection performance[J]. Materials Today Chemistry, 2022.DOI:10.1016/j.mtchem.2021.100689.
[20] ZHANG Han, ZHANG Xiaowei, WANG Pengjun, et al. Laminated polyacrylonitrile nanofiber membrane codoped with boehmite nanoparticles for efficient electrostatic capture of particulate matters[J]. Nanotechnology, 2021. DOI:10.1088/1361-6528/abeadc.
[21] LI Yuyao, CAO Leitao, YIN Xia, et al. Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM0.3[J]. Journal of colloid and interface science, 2020, 578: 565-573.
doi: S0021-9797(20)30742-6 pmid: 32544628
[22] WANG Bin, SUN Zhiming, SUN Qing, et al. The preparation of bifunctional electrospun air filtration membranes by introducing attapulgite for the efficient capturing of ultrafine PMs and hazardous heavy metalions[J]. Environmental pollution (Barking, Essex: 1987), 2019, 249: 851-859.
[23] 万冬阳. 碳基纳米纤维异质结体系的构筑及其PM捕获性能的研究[D]. 郑州: 郑州大学, 2019: 21-56.
WAN Dongyang. Construction of carbon-based nanofiber heterojunction system and its PM trapping performance[D]. Zhengzhou: Zhengzhou University, 2019: 21-56.
[24] 李珂. 静电纺制备多功能耐高温空气过滤材料及其性能研究[D]. 上海: 东华大学, 2023: 25-43.
LI Ke. Preparation and properties of multifunctional high temperature resistant air filtration materials by electrostatic spinning[D]. Shanghai: Donghua University, 2023: 25-43.
[25] XIONG Jian, LI Ailin, WANG Liming, et al. Multiscale nanoarchitectured fibrous networks for high-performance, self-sterilization, and recyclable face masks[J]. Small, 2022. DOI:10.1002/smll.202105570.
[26] 张浩. 多功能静电纺纳米纤维在环境污染物去除中的应用研究[D]. 长春: 吉林大学, 2023: 14-28.
ZHANG Hao. Research on the application of multifunctional electrostatic spinning nanofibers in the removal of environmental pollutants[D]. Changchun: Jilin University, 2023: 14-28.
[27] ZHANG Shichao, LIU Hui, YIN Xia, et al. Tailoring mechanically robust poly(m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter[J]. Scientific Reports, 2017. DOI:10.1038/srep40550.
[28] 程博闻, 高鲁, 邓南平, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(12): 139-144.
doi: 10.13475/j.fzxb.20180801206
CHENG Bowen, GAO Lu, DENG Nanping, et al. Preparation and filtration properties of electrospun dendritic polylactic acid nanofiber membranes[J]. Journal of Textile Research, 2018, 39(12): 139-144.
doi: 10.13475/j.fzxb.20180801206
[29] HUA Yuezhen, LI Yuyao, JI Zekai, et al. Dual-bionic, fluffy, and flame resistant polyamide-imide ultrafine fibers for high-temperature air filtration[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2022.139168.
[30] 孙少阳, 申莹, 王容容, 等. 静电纺聚乳酸纳米纤维的制备及其孔结构调控[J]. 中国塑料, 2023, 37(4): 67-73.
doi: 10.19491/j.issn.1001-9278.2023.04.011
SUN Shaoyang, SHEN Ying, WANG Rongrong, et al. Preparation and pore structure control of polylactic acid nanofibers by electrostatic spinning[J]. China Plastics, 2023, 37(4): 67-73.
doi: 10.19491/j.issn.1001-9278.2023.04.011
[31] XIONG Junpeng, SHAO Weili, WANG Ling, et al. High-performance antihaze window screen based on multiscale structured polyvinylidene fluoride nanofibers[J]. Journal of Colloid and Interface Science, 2022, 607(1): 711-719.
[32] 宋岩, 熊健, 张弘楠, 等. 空气过滤用复合纳米纤维膜的制备及其性能[J]. 东华大学学报(自然科学版), 2020, 46(4): 10.
SONG Yan, XIONG Jian, ZHANG Hongnan, et al. Preparation and properties of composite nanofiber membrane for air filtration[J]. Journal of Donghua University(Natural Science), 2020, 46(4): 10.
[33] FU Xuewei, LIU Juejing, DING Chenfeng, et al. Building bimodal structures by a wettability difference-driven strategy for high-performance protein air-filters[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.125742.
[34] 刘允璞, 温小雪, 周智勇, 等. 空气过滤微纳米纤维膜的组合式制备及其性能[J]. 东华大学学报(自然科学版), 2023, 49(4): 23-29.
LIU Yunpu, WEN Xiaoxue, ZHOU Zhiyong, et al. Composite preparation and properties of micro-nano fiber membrane for air filtration[J]. Journal of Donghua University(Natural Science), 2023, 49(4): 23-29.
[35] GE Jing, LV Xujin, ZHOU Jianwei, et al. Multi-level structured polylactic acid electrospunfiber membrane based on green solvents for high-performance air filtration[J]. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125659.
[36] 殷妮, 刘福娟. 空气过滤用纳米纤维膜研究进展[J]. 现代纺织技术, 2021, 29(5): 26-36.
YIN Ni, LIU Fujuan. Research progress of nanofiber membrane for air filtration[J]. Advanced Textile Technology, 2021, 29(5): 26-36.
[37] WEI Zhimei, SU Qing, YANG Jie, et al. Highperformance filter membrane composed of oxidized poly (arylene sulfide sulfone) nanofibers for the highefficiency air filtration[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.126033.
[38] SU Qing, WEI Zhimei, WANG Xiaojun, et al. Electrospun composite membrane based on polyarylene sulfide sulfone/Ag/ZnO nanofibers for antibacterial effective PM2.5 filtration[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.51693.
[39] VICTOR Felix Swamidoss, KUGARAJAH Vaidhegi, BANGARU Mohan, et al. Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination[J]. Environmental Science and Pollution Research, 2021, 28(28): 37520-37533.
[40] WANG Fei, SI Yang, YU Jianyong, et al. Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration[J]. Advanced Functional Materials, 2021, 31(49): 1-9.
[41] JANG Sanha, JUNG Sungwoo, SONG Sehwan, et al. Preparation and characterization of multifunctional nanofibers containing metal-organic frameworks and Cu2O nanoparticles: particulate matter capture and antibacterial activity[J]. Environmental Science Nano, 2021, 8(5): 1226-1235.
[42] SHEN Ruimin, SHAO Zungui, CHEN Ruixin, et al. Fully bio-based zein/chitosan hydrochloride/phloretin bimodal fibrous membrane for high-performance and antibacterial air filtration based on green electrospinning[J]. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2024.126893.
[43] SHEN Ruimin, SHAO Zungui, XIE Junjie, et al. Biobased nanofibrous membrane via delayed-volatilizing green electrospinning for high-performance air filtration[J]. ACS Applied Polymer Materials, 2023, 5(10): 8559-8569.
[44] 郭朝阳, 陈江萍, 吴仁香, 等. 静电纺聚醚酰胺纳米纤维膜的制备及其空气过滤性能[J]. 厦门大学学报(自然科学版), 2023, 62(5): 766-773.
GUO Chaoyang, CHEN Jiangping, WU Renxiang, et al. Preparation of polyetheramide nanofiber membrane by electrostatic spinning and its air filtration perfor-mance[J]. Journal of Xiamen University (Natural Science Edition), 2023, 62(5): 766-773.
[45] YU Jia, TIAN Xu, XIN Binjie, et al. Preparation and characterization of PMIA nanofiber filter membrane for air filter[J]. Fibers and Polymers, 2021, 22(9): 2413-2423.
[46] WU Litao, ZHANG Qian, WANG Xuefang, et al. Electrospun polyethersulfone@MOF composite membranes for air cleaning and oilwater separation[J]. Journal of Environmental Chemical Engineering, 2023. DOI:10.1016/j.jece.2023.110044.
[47] KANG Yutang, CHEN Jiahao, FENG Shasha, et al. Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermallyoxidized PAN/PVP/SnO2 nanofiber membrane[J]. Journal of Membrane Science, 2022. DOI:10.1016/j.memsci.2022.120985.
[48] LIU Suqi, RENEKER Darrell H. Droplet-jet shape parameters predict electrospun polymer nanofiber diameter[J]. Polymer, 2019, 168: 155-158.
doi: 10.1016/j.polymer.2019.01.082
[49] 周智勇. 静电纺曲边碟形喷头的研制及其制备空气过滤膜的应用研究[D]. 上海: 东华大学, 2021: 22-63.
ZHOU Zhiyong. Study on the development of a curved edge dish-shaped nozzle by electrostatic spinning and its application in the preparation of air filtration membrane[D]. Shanghai: Donghua University, 2021: 22-63.
[50] XIONG Jian, LIU Ye, LI Ailin, et al. Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning[J]. Materials & Design, 2021. DOI:10.1016/j.matdes.2020.109247.
[51] LEI Sailing, WANG Liming, WANG Rongwu, et al. Controllable diameter of electrospun nanofibers based on the velocity of whipping jets for high-efficiency air filtration[J]. Science China Technological Sciences, 2022, 65(2): 481-489.
[52] 权震震, 王亦涵, 祖遥, 等. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(9): 39-45.
QUAN Zhenzhen, WANG Yihan, ZU Yao, et al. Formation mechanism and film formation characteristics of electrostatic spinning jet with multi-curved noz-zle[J]. Journal of Textile Research, 2021, 42 (9): 39-45.
[1] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[2] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[3] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[4] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[5] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[6] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[7] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[8] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[9] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[10] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[11] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
[12] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[13] 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34.
[14] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[15] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!