纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 44-53.doi: 10.13475/j.fzxb.20240402402

• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇    下一篇

气流辅助的静电纺丝技术研究进展

刘德龙, 王红霞, 林童()   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2024-04-09 修回日期:2024-05-14 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 林童(1966—),男,教授,博士。主要研究方向为纳米纤维、静电纺丝技术、功能性纺织品及高分子材料。E-mail:tong.lin@tiangong.edu.cn
  • 作者简介:刘德龙(2000—),男,硕士生。主要研究方向为气流静电纺丝。
  • 基金资助:
    国家自然科学基金面上项目(52273253)

Research progress in airflow-assisted electrospinning

LIU Delong, WANG Hongxia, LIN Tong()   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2024-04-09 Revised:2024-05-14 Published:2024-08-15 Online:2024-08-21

摘要:

近年来,通过引入外部气流来增强静电纺使纳米纤维生产能力取得了显著进展,气流辅助不仅提高了静电纺丝效率,还改善了纤维的取向、堆积密度甚至形貌,已逐渐发展成为一种先进的纳米纤维制造方法。不同的气流施加方式,对静电纺丝过程具有不同的效果,结合不同的静电纺丝模式,使其展示独特优势,从而极大地丰富了静电纺丝技术。综述了气流辅助静电纺丝技术的研究进展,包括其基本原理、发展历程,讨论了具有代表性的气流辅助静电纺丝装置,如气流辅助的针型静电纺丝、气流辅助的无针静电纺丝、离心静电纺丝主要参数和理论模拟。对气流辅助静电纺丝技术存在的问题以及未来研究发展进行了展望。

关键词: 气流辅助, 静电纺丝, 纳米纤维, 生产率, 纺丝头

Abstract:

Significance Electrospinning technology has been widely used to produce a variety of nanofibers due to its ease of operation, compatibility with a wide range of polymers, and ability to control fiber morphology and dimensions. However, conventional electrospinning relies primarily on syringes and needles as spinnerets, resulting in low fiber yields and limited scalability. Currently, there are two main types of electrospinning technologies capable of large-scale nanofiber production: needleless electrospinning and air-assisted electrospinning. Both methods have received extensive research attention. Although needleless electrospinning has been extensively discussed in previous literature, there is a lack of summaries on air-assisted electrospinning techniques. Therefore, it is crucial to review the development status of air-assisted electrospinning technology to improve the large-scale production capabilities of electrospun fibers.

Progress Over the past decades, many studies have been devoted to improving the productivity of electrospinning for nanofiber production. Two main types of electrospinning technologies have potential for the mass production of nanofibers: needleless electrospinning and air-assisted electrospinning, each with its advantages. The latter offers increased productivity and refined fiber diameters. Introducing airflow into the electrospinning process creates additional forces on the jet that not only increase jet stretching and redirect the jet path, but also accelerate fiber solidification. As a result, fiber formation is accelerated, fiber diameter is reduced, and a unique fiber morphology is formed. These innovative changes also alter the fiber deposition location and fiber aggregation states, providing unique benefits. The airflow can be integrated in several directions, such as parallel, vertical, and reverse to the initial jet motion. Despite the difference in airflow direction, they all contribute to increased jet or fiber elongation. Various air-assisted electrospinning setups have been documented, including those based on traditional needle-based and state-of-the-art needleless electrospinning setups. Aerodynamic electrospinning has been developed using near-field induction to generate the jet and high-speed airflow to redirect the jet deposition. In combination with an air amplifier, electrospinning allows the trajectory of the jet to be manipulated. In addition, air can be incorporated into electrospinning by introducing it into the spinning solution to form bubbles, a technology also known as bubble electrospinning. The large curvature of the solution bubbles induces the generation of multiple jets, which increases nanofiber production. Centrifugal electrospinning is another air-assisted variant in which the airflow is passively generated by the high-speed rotation of the spinneret. The centrifugal forces combined with the electric field and airflow enhance the fiber production process. These innovative designs create opportunities to increase nanofiber production and provide unprecedented control over final product performance for a variety of applications. However, despite significant advances in this area, the technology is still in its infancy and requires further advances in both practical applications and theoretical understanding.

Conclusion and Prospect This review provides an overview of the current research situation in air-assisted electrospinning, including a brief history of its development, basic concepts, different spinning equipment designs, parameter effects, and modeling simulations. Air-assisted electrospinning is rapidly emerging as a viable approach for the production of large-area nanofibers. Previous research has resulted in unique designs based not only on needle-based and needleless electrospinning approaches and centrifugal spinning but also on breakthrough bubble dynamics. The ability to adjust fiber packing density through air flow opens up a viable way to manipulate nanofiber performance. Despite the remarkable progress, air-assisted electrospinning still faces challenges, particularly in precisely controlling the air-jet interaction and solvent evaporation during the electrospinning process, given the instability of the jet and the complexity of the polymer solutions. Despite many novel designs, the diversity in structure and shape of electrospinning nozzles still leaves many areas that are not well understood. These require further advances in experimentation and design. In addition, the harmonious blending of airflow and electric field forces has been a critical yet challenging aspect of air-assisted electrospinning. The theoretical understanding of the intricate interplay between aerodynamics and electric field during high-speed jet dynamics remains a mystery, particularly to the rapid drying mechanism influenced by the combined effects of airflow and electric field force. The lack of repeated validation by multiple research groups casts a shadow of doubt on the applicability of the existing findings, underscoring the need for further validation. The application potential of nanofibers produced by air-assisted electrospinning in various fields has yet to be fully realized. These challenges and uncertainties call for future research and development. It is expected that continued efforts in this particular field will lead to a deeper understanding of the underlying principles and mechanisms, which will ultimately lead to the optimization of nanofiber production techniques. As a result, air-assisted electrospinning is poised to revolutionize the field of nanofiber manufacturing, providing new opportunities for innovation and impacting various industries.

Key words: airflow assistance, electrospinning, nanofiber, productivity, spinneret

中图分类号: 

  • TQ390

图1

气流对静电纺丝射流的不同作用形式示意图"

表1

气流辅助静电纺纳米纤维产量"

聚合物种类 最大质量
浓度/
(g·mL-1)
最大总
流量/
(mL·h-1)
纤维产量/
(g·h-1)
参考
文献
透明胶质 3 3.6 0.108 [15]
聚醚砜 25 6 1.5 [16]
聚丙烯腈/聚氨酯 12/18 12 3.6 [17]
聚丙烯 13.2 [18]
聚碳酸酯 16 12 1.92 [19]
聚环氧乙烷 8 6 0.48 [20]
聚酰胺-6 25 0.06 0.015 [21]
聚乙烯醇 8 1 0.08 [22]
聚丙烯腈 75.6 [23]
聚丙烯腈 16 18 2.88 [24]
聚丙烯腈/氧化锌 9/3 17.33 [25]
聚乙烯醇 4.5 [26]

图2

同向气流辅助的多针纺丝头结构示意图"

图3

对极式垂直气流辅助静电纺丝装置"

图4

气流增强的网孔静电纺丝头示意图"

图5

气泡静电纺丝示意图"

图6

气动静电纺丝示意图"

图7

空气放大辅助熔体静电纺丝结构图"

图8

离心静电纺丝示意图"

[1] FANG J, NIU H T, LIN T, et al. Applications of electrospun nanofibers[J]. Chinese Science Bulletin, 2008, 53(15): 2265-2286.
[2] MENDES A C, STROHMENGER T, GOYCOOLEA F, et al. Electrostatic self-assembly of polysaccharides into nanofibers[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 531: 182-188.
[3] YAO T Y, CHEN H L, SAMAL P, et al. Self-assembly of electrospun nanofibers into gradient honeycomb structures[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.107614.
[4] SHI Q Q, ZHAN H, MO R W, et al. High-strength and toughness carbon nanotube fiber/resin composites by controllable wet-stretching and stepped pressing[J]. Carbon, 2022, 189: 1-9.
[5] ZHANG B P, LI Z W, CHENG Z K, et al. Double-stretching as an effective and generalizable strategy towards thinner nanofibers in solution blow spinning[J]. Nano Research, 2023, 16(4): 5709-5714.
[6] ZHOU Y F, JIANG L, JIA H Y, et al. Study on spinnability of PP/PU blends and preparation of PP/PU bi-component melt blown nonwovens[J]. Fibers and Polymers, 2019, 20(6): 1200-1207.
[7] KHAN K U, MAHMOOD S, RAEES A, et al. A postgraduate experiment: a study of fabricating nanofibers by electrospinning[J]. European Journal of Physics, 2021. DOI:10.1088/1361-6404/abf25f.
[8] DARISTOTLE J L, BEHRENS A M, SANDLER A D, et al. A review of the fundamental principles and applications of solution blow spinning[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 34951-34963.
[9] PERSANO L, CAMPOSEO A, TEKMEN C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review[J]. Macromolecular Materials and Engineering, 2013, 298(5): 504-520.
[10] KENAWY E R, ABDEL-HAY F I, EL-NEWEHY M H, et al. Processing of polymer nanofibers through electrospinning as drug delivery systems[J]. Materials Chemistry and Physics, 2009, 113(1): 296-302.
[11] 陈勇, 周海培, 黄小娜, 等. 静电纺纳米纤维行业发展现状及存在问题探讨[J]. 现代化工, 2023, 43(S1): 1-3.
CHEN Yong, ZHOU Haipei, HUANG Xiaona, et al. Discussion on development and problems of electrospinning nanofiber industry[J]. Modern Chemical Industry, 2023, 43(S1): 1-3.
[12] LEE J, MOON S, LAHANN J, et al. Recent progress in preparing nonwoven nanofibers via needleless electrospinning[J]. Macromolecular Materials and Engineering, 2023. DOI:10.1002/mame.202300057.
[13] 王飞龙, 邵珠帅. 高效无针静电纺丝研究进展[J]. 纺织导报, 2014(1): 64-67.
WANG Feilong, SHAO Zhushuai. Recent development of efficient needleless electrospinning technology[J]. China Textile Leader, 2014(1): 64-67.
[14] RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9): 4531-4547.
[15] UM I C, FANG D F, HSIAO B S, et al. Electro-spinning and electro-blowing of hyaluronic acid[J]. Biomacromolecules, 2004, 5(4): 1428-1436.
pmid: 15244461
[16] WANG X F, UM I C, FANG D F, et al. Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments[J]. Polymer, 2005, 46(13): 4853-4867.
[17] TAKASAKI M, HARA K, OHKOSHI Y, et al. Preparation of ultrafine polyurethane fiber web by laser-electrospinning combined with air blowing[J]. Polymer Engineering and Science, 2014, 54(11): 2605-2609.
[18] DUAN G A, GREINER A. Air-blowing-assisted coaxial electrospinning toward high productivity of core/sheath and hollow fibers[J]. Macromolecular Materials and Engineering, 2019. DOI:10.1002/mame.201800669.
[19] HSIAO H Y, HUANG C M, LIU Y Y, et al. Effect of air blowing on the morphology and nanofiber properties of blowing-assisted electrospun polycarbonates[J]. Journal of Applied Polymer Science, 2012, 124(6): 4904-4914.
[20] ZHENG J Y, ZHOU C Y, ZHANG Z H, et al. Highly efficient air-assisted multi-jet electrospinning with curved arranged spinnerets[J]. AIP Advances, 2020. DOI:10.1063/1.5130531.
[21] VARESANO A, MONTARSOLO A, TONIN C. Crimped polymer nanofibres by air-driven electrospinning[J]. European Polymer Journal, 2007, 43(7): 2792-2798.
[22] ZHENG Y K, CAO H T, ZHOU Z, et al. Concentrated multi-nozzle electrospinning[J]. Fibers and Polymers, 2019, 20(6): 1180-1186.
doi: 10.1007/s12221-019-8984-y
[23] HE J X, WANG L D, LIU R T, et al. Fabrication of nanofibers with ultrahigh production by a facile high pressure air-jet atomized electrospinning[J]. Fibers and Polymers, 2014, 15(11): 2283-2289.
[24] WANG X, LIN T, WANG X G. Use of airflow to improve the nanofibrous structure and quality of nanofibers from needleless electrospinning[J]. Journal of Industrial Textiles, 2015, 45(2): 310-320.
[25] CHENG T T, XU L, WANG M D. Effect of surface active agent on bubble-electrospun polyacrylonitrile nanofibers[J]. Thermal Science, 2019, 23(4): 2481-2487.
[26] YAN G L, NIU H T, ZHOU H, et al. Electro-aerodynamic field aided needleless electrospinning[J]. Nanotechnology, 2018. DOI:10.1088/1361-6528/aab830.
[27] LIN Y, YAO Y Y, YANG X Z, et al. Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning[J]. Journal of Applied Polymer Science, 2008, 107(2): 909-917.
[28] TIAN D, HE J H. Control of macromolecule chains structure in a nanofiber[J]. Polymers, 2020. DOI:10.3390/polym12102305.
[29] MCCLURE M J, WOLFE P S, SIMPSON D G, et al. The use of air-flow impedance to control fiber deposition patterns during electrospinning[J]. Biomaterials, 2012, 33(3): 771-779.
doi: 10.1016/j.biomaterials.2011.10.011 pmid: 22054536
[30] AMBRUS R, ALSHWEIAT A, CSÓKA I, et al. 3D-printed electrospinning setup for the preparation of loratadine nanofibers with enhanced physicochemical properties[J]. International Journal of Pharmaceutics, 2019. DOI:10.1016/j.ijpharm.2019.118455.
[31] WEI D, YE C W, AHMED A, et al. Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets[J]. Beilstein Journal of Nanotechnology, 2023, 14: 141-150.
doi: 10.3762/bjnano.14.15 pmid: 36761678
[32] LIU Y, HE J H. Bubble electrospinning for mass production of nanofibers[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(3): 393-396.
[33] PU C C, HE J X, CUI S Z, et al. Double- nozzle air-jet electrospinning for nanofiber fabrication[J]. Journal of Applied Polymer Science, 2014. DOI:10.1002/app.40040.
[34] LI X X, HE J H. Bubble electrospinning with an auxiliary electrode and an auxiliary air flow[J]. Recent Patents on Nanotechnology, 2020, 14(1): 42-45.
[35] 孔海燕, 何吉欢. 气泡静电纺丝工艺与装置研究进展[J]. 纺织学报, 2014, 35(10): 156-162.
KONG Haiyan, HE Jihuan. Review on bubble-electrospinning technology and set-ups[J]. Journal of Textile Research, 2014, 35(10): 156-162.
[36] CHEN H B, LI H Y, MA X L, et al. Large scaled fabrication of microfibers by air-suction assisted needleless melt electrospinning[J]. Fibers and Polymers, 2016, 17(4): 576-581.
[37] KANCHEVA M, TONCHEVA A, MANOLOVA N, et al. Advanced centrifugal electrospinning setup[J]. Materials Letters, 2014, 136: 150-152.
[38] DABIRIAN F, RAVANDI S A H, PISHEVAR A R. Investigation of parameters affecting PAN nanofiber production using electrical and centrifugal forces as a novel method[J]. Current Nanoscience, 2010, 6(5): 545-552.
[39] DABIRIAN F, RAVANDI S A H, PISHEVAR A R, et al. A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems[J]. Journal of Electrostatics, 2011, 69(6): 540-546.
[40] LIAO C C, WANG C C, CHEN C Y, et al. Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties[J]. Polymer, 2011, 52(10): 2263-2275.
[41] EDMONDSON D, COOPER A, JANA S, et al. Centrifugal electrospinning of highly aligned polymer nanofibers over a large area[J]. Journal of Materials Chemistry, 2012, 22(35): 18646-18652.
[42] MÎNDRU T B, IGNAT L, MÌNDRU I B, et al. Morphological aspects of polymer fiber mats obtained by air flow rotary-jet spinning[J]. Fibers and Polymers, 2013, 14(9): 1526-15234.
[43] VALIPOURI A, RAVANDI S A H, PISHEVAR A R. A novel method for manufacturing nanofibers[J]. Fibers and Polymers, 2013, 14(6): 941-949.
[44] WANG L, AHMAD Z, HUANG J, et al. Multi-compartment centrifugal electrospinning based composite fibers[J]. Chemical Engineering Journal, 2017, 330: 541-549.
[45] LIU Y J, TAN J, YU S Y, et al. High-efficiency preparation of polypropylene nanofiber by melt differential centrifugal electrospinning[J]. Journal of Applied Polymer Science, 2020. DOI:10.1002/app.48299.
[46] CHOI M, KIM J. Development of Coaxial air-blown electrospinning process for manufacturing non-woven nanofiber: I: morphology changes in non-woven nanofiber[J]. Fibers and Polymers, 2019, 20(8): 1601-1607.
[47] WANG B, YAO Y Y, PENG J R, et al. Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinning[J]. Journal of Applied Polymer Science, 2009, 114(2): 883-891.
[48] KONG C S, YOO W S, LEE K Y, et al. Nanofiber deposition by electroblowing of PVA (polyvinyl alcohol)[J]. Journal of Materials Science, 2009, 44(4): 1107-1112.
[49] CHENG T T, LI S Q, XU L, et al. Controllable preparation and formation mechanism of nanofiber membranes with large pore sizes using a modified electrospinning[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.107867.
[50] MENG K. Investigation on compound field of electrospinning and melt blowing for producing nanofibers[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2017, 27(2): 282-286.
[51] XU G J, CHEN M Y, GAO Y F, et al. Gas-assisted electrospinning of high-performance ceramic fibers: optimal design modelling and experimental results of the gas channel of the nozzle[J]. Frontiers in Materials, 2023. DOI:10.3389/fmats.2023.1113168.
[1] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[2] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[3] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[4] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[5] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[6] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[7] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[8] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
[9] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[10] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[11] 昌康琪, 罗梦颖, 赵青华, 王栋, 李沐芳. 辐射降温聚烯烃纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 24-30.
[12] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[13] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[14] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
[15] 刘鑫, 王婵, 窦皓, 孟家光, 陈莉, 樊威. 废旧棉/纳米纤维素自增强复合纸的制备与性能[J]. 纺织学报, 2024, 45(06): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!