纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 44-53.doi: 10.13475/j.fzxb.20240402402
• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇 下一篇
LIU Delong, WANG Hongxia, LIN Tong()
摘要:
近年来,通过引入外部气流来增强静电纺使纳米纤维生产能力取得了显著进展,气流辅助不仅提高了静电纺丝效率,还改善了纤维的取向、堆积密度甚至形貌,已逐渐发展成为一种先进的纳米纤维制造方法。不同的气流施加方式,对静电纺丝过程具有不同的效果,结合不同的静电纺丝模式,使其展示独特优势,从而极大地丰富了静电纺丝技术。综述了气流辅助静电纺丝技术的研究进展,包括其基本原理、发展历程,讨论了具有代表性的气流辅助静电纺丝装置,如气流辅助的针型静电纺丝、气流辅助的无针静电纺丝、离心静电纺丝主要参数和理论模拟。对气流辅助静电纺丝技术存在的问题以及未来研究发展进行了展望。
中图分类号:
[1] | FANG J, NIU H T, LIN T, et al. Applications of electrospun nanofibers[J]. Chinese Science Bulletin, 2008, 53(15): 2265-2286. |
[2] | MENDES A C, STROHMENGER T, GOYCOOLEA F, et al. Electrostatic self-assembly of polysaccharides into nanofibers[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 531: 182-188. |
[3] | YAO T Y, CHEN H L, SAMAL P, et al. Self-assembly of electrospun nanofibers into gradient honeycomb structures[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.107614. |
[4] | SHI Q Q, ZHAN H, MO R W, et al. High-strength and toughness carbon nanotube fiber/resin composites by controllable wet-stretching and stepped pressing[J]. Carbon, 2022, 189: 1-9. |
[5] | ZHANG B P, LI Z W, CHENG Z K, et al. Double-stretching as an effective and generalizable strategy towards thinner nanofibers in solution blow spinning[J]. Nano Research, 2023, 16(4): 5709-5714. |
[6] | ZHOU Y F, JIANG L, JIA H Y, et al. Study on spinnability of PP/PU blends and preparation of PP/PU bi-component melt blown nonwovens[J]. Fibers and Polymers, 2019, 20(6): 1200-1207. |
[7] | KHAN K U, MAHMOOD S, RAEES A, et al. A postgraduate experiment: a study of fabricating nanofibers by electrospinning[J]. European Journal of Physics, 2021. DOI:10.1088/1361-6404/abf25f. |
[8] | DARISTOTLE J L, BEHRENS A M, SANDLER A D, et al. A review of the fundamental principles and applications of solution blow spinning[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 34951-34963. |
[9] | PERSANO L, CAMPOSEO A, TEKMEN C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review[J]. Macromolecular Materials and Engineering, 2013, 298(5): 504-520. |
[10] | KENAWY E R, ABDEL-HAY F I, EL-NEWEHY M H, et al. Processing of polymer nanofibers through electrospinning as drug delivery systems[J]. Materials Chemistry and Physics, 2009, 113(1): 296-302. |
[11] | 陈勇, 周海培, 黄小娜, 等. 静电纺纳米纤维行业发展现状及存在问题探讨[J]. 现代化工, 2023, 43(S1): 1-3. |
CHEN Yong, ZHOU Haipei, HUANG Xiaona, et al. Discussion on development and problems of electrospinning nanofiber industry[J]. Modern Chemical Industry, 2023, 43(S1): 1-3. | |
[12] | LEE J, MOON S, LAHANN J, et al. Recent progress in preparing nonwoven nanofibers via needleless electrospinning[J]. Macromolecular Materials and Engineering, 2023. DOI:10.1002/mame.202300057. |
[13] | 王飞龙, 邵珠帅. 高效无针静电纺丝研究进展[J]. 纺织导报, 2014(1): 64-67. |
WANG Feilong, SHAO Zhushuai. Recent development of efficient needleless electrospinning technology[J]. China Textile Leader, 2014(1): 64-67. | |
[14] | RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9): 4531-4547. |
[15] |
UM I C, FANG D F, HSIAO B S, et al. Electro-spinning and electro-blowing of hyaluronic acid[J]. Biomacromolecules, 2004, 5(4): 1428-1436.
pmid: 15244461 |
[16] | WANG X F, UM I C, FANG D F, et al. Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments[J]. Polymer, 2005, 46(13): 4853-4867. |
[17] | TAKASAKI M, HARA K, OHKOSHI Y, et al. Preparation of ultrafine polyurethane fiber web by laser-electrospinning combined with air blowing[J]. Polymer Engineering and Science, 2014, 54(11): 2605-2609. |
[18] | DUAN G A, GREINER A. Air-blowing-assisted coaxial electrospinning toward high productivity of core/sheath and hollow fibers[J]. Macromolecular Materials and Engineering, 2019. DOI:10.1002/mame.201800669. |
[19] | HSIAO H Y, HUANG C M, LIU Y Y, et al. Effect of air blowing on the morphology and nanofiber properties of blowing-assisted electrospun polycarbonates[J]. Journal of Applied Polymer Science, 2012, 124(6): 4904-4914. |
[20] | ZHENG J Y, ZHOU C Y, ZHANG Z H, et al. Highly efficient air-assisted multi-jet electrospinning with curved arranged spinnerets[J]. AIP Advances, 2020. DOI:10.1063/1.5130531. |
[21] | VARESANO A, MONTARSOLO A, TONIN C. Crimped polymer nanofibres by air-driven electrospinning[J]. European Polymer Journal, 2007, 43(7): 2792-2798. |
[22] |
ZHENG Y K, CAO H T, ZHOU Z, et al. Concentrated multi-nozzle electrospinning[J]. Fibers and Polymers, 2019, 20(6): 1180-1186.
doi: 10.1007/s12221-019-8984-y |
[23] | HE J X, WANG L D, LIU R T, et al. Fabrication of nanofibers with ultrahigh production by a facile high pressure air-jet atomized electrospinning[J]. Fibers and Polymers, 2014, 15(11): 2283-2289. |
[24] | WANG X, LIN T, WANG X G. Use of airflow to improve the nanofibrous structure and quality of nanofibers from needleless electrospinning[J]. Journal of Industrial Textiles, 2015, 45(2): 310-320. |
[25] | CHENG T T, XU L, WANG M D. Effect of surface active agent on bubble-electrospun polyacrylonitrile nanofibers[J]. Thermal Science, 2019, 23(4): 2481-2487. |
[26] | YAN G L, NIU H T, ZHOU H, et al. Electro-aerodynamic field aided needleless electrospinning[J]. Nanotechnology, 2018. DOI:10.1088/1361-6528/aab830. |
[27] | LIN Y, YAO Y Y, YANG X Z, et al. Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning[J]. Journal of Applied Polymer Science, 2008, 107(2): 909-917. |
[28] | TIAN D, HE J H. Control of macromolecule chains structure in a nanofiber[J]. Polymers, 2020. DOI:10.3390/polym12102305. |
[29] |
MCCLURE M J, WOLFE P S, SIMPSON D G, et al. The use of air-flow impedance to control fiber deposition patterns during electrospinning[J]. Biomaterials, 2012, 33(3): 771-779.
doi: 10.1016/j.biomaterials.2011.10.011 pmid: 22054536 |
[30] | AMBRUS R, ALSHWEIAT A, CSÓKA I, et al. 3D-printed electrospinning setup for the preparation of loratadine nanofibers with enhanced physicochemical properties[J]. International Journal of Pharmaceutics, 2019. DOI:10.1016/j.ijpharm.2019.118455. |
[31] |
WEI D, YE C W, AHMED A, et al. Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets[J]. Beilstein Journal of Nanotechnology, 2023, 14: 141-150.
doi: 10.3762/bjnano.14.15 pmid: 36761678 |
[32] | LIU Y, HE J H. Bubble electrospinning for mass production of nanofibers[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(3): 393-396. |
[33] | PU C C, HE J X, CUI S Z, et al. Double- nozzle air-jet electrospinning for nanofiber fabrication[J]. Journal of Applied Polymer Science, 2014. DOI:10.1002/app.40040. |
[34] | LI X X, HE J H. Bubble electrospinning with an auxiliary electrode and an auxiliary air flow[J]. Recent Patents on Nanotechnology, 2020, 14(1): 42-45. |
[35] | 孔海燕, 何吉欢. 气泡静电纺丝工艺与装置研究进展[J]. 纺织学报, 2014, 35(10): 156-162. |
KONG Haiyan, HE Jihuan. Review on bubble-electrospinning technology and set-ups[J]. Journal of Textile Research, 2014, 35(10): 156-162. | |
[36] | CHEN H B, LI H Y, MA X L, et al. Large scaled fabrication of microfibers by air-suction assisted needleless melt electrospinning[J]. Fibers and Polymers, 2016, 17(4): 576-581. |
[37] | KANCHEVA M, TONCHEVA A, MANOLOVA N, et al. Advanced centrifugal electrospinning setup[J]. Materials Letters, 2014, 136: 150-152. |
[38] | DABIRIAN F, RAVANDI S A H, PISHEVAR A R. Investigation of parameters affecting PAN nanofiber production using electrical and centrifugal forces as a novel method[J]. Current Nanoscience, 2010, 6(5): 545-552. |
[39] | DABIRIAN F, RAVANDI S A H, PISHEVAR A R, et al. A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems[J]. Journal of Electrostatics, 2011, 69(6): 540-546. |
[40] | LIAO C C, WANG C C, CHEN C Y, et al. Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties[J]. Polymer, 2011, 52(10): 2263-2275. |
[41] | EDMONDSON D, COOPER A, JANA S, et al. Centrifugal electrospinning of highly aligned polymer nanofibers over a large area[J]. Journal of Materials Chemistry, 2012, 22(35): 18646-18652. |
[42] | MÎNDRU T B, IGNAT L, MÌNDRU I B, et al. Morphological aspects of polymer fiber mats obtained by air flow rotary-jet spinning[J]. Fibers and Polymers, 2013, 14(9): 1526-15234. |
[43] | VALIPOURI A, RAVANDI S A H, PISHEVAR A R. A novel method for manufacturing nanofibers[J]. Fibers and Polymers, 2013, 14(6): 941-949. |
[44] | WANG L, AHMAD Z, HUANG J, et al. Multi-compartment centrifugal electrospinning based composite fibers[J]. Chemical Engineering Journal, 2017, 330: 541-549. |
[45] | LIU Y J, TAN J, YU S Y, et al. High-efficiency preparation of polypropylene nanofiber by melt differential centrifugal electrospinning[J]. Journal of Applied Polymer Science, 2020. DOI:10.1002/app.48299. |
[46] | CHOI M, KIM J. Development of Coaxial air-blown electrospinning process for manufacturing non-woven nanofiber: I: morphology changes in non-woven nanofiber[J]. Fibers and Polymers, 2019, 20(8): 1601-1607. |
[47] | WANG B, YAO Y Y, PENG J R, et al. Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinning[J]. Journal of Applied Polymer Science, 2009, 114(2): 883-891. |
[48] | KONG C S, YOO W S, LEE K Y, et al. Nanofiber deposition by electroblowing of PVA (polyvinyl alcohol)[J]. Journal of Materials Science, 2009, 44(4): 1107-1112. |
[49] | CHENG T T, LI S Q, XU L, et al. Controllable preparation and formation mechanism of nanofiber membranes with large pore sizes using a modified electrospinning[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.107867. |
[50] | MENG K. Investigation on compound field of electrospinning and melt blowing for producing nanofibers[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2017, 27(2): 282-286. |
[51] | XU G J, CHEN M Y, GAO Y F, et al. Gas-assisted electrospinning of high-performance ceramic fibers: optimal design modelling and experimental results of the gas channel of the nozzle[J]. Frontiers in Materials, 2023. DOI:10.3389/fmats.2023.1113168. |
[1] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[2] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
[3] | 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126. |
[4] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141. |
[5] | 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149. |
[6] | 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25. |
[7] | 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43. |
[8] | 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80. |
[9] | 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23. |
[10] | 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239. |
[11] | 昌康琪, 罗梦颖, 赵青华, 王栋, 李沐芳. 辐射降温聚烯烃纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 24-30. |
[12] | 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209. |
[13] | 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31. |
[14] | 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38. |
[15] | 刘鑫, 王婵, 窦皓, 孟家光, 陈莉, 樊威. 废旧棉/纳米纤维素自增强复合纸的制备与性能[J]. 纺织学报, 2024, 45(06): 39-45. |
|