纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 54-64.doi: 10.13475/j.fzxb.20240400402
• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇 下一篇
DUO Yongchao1, SONG Bing1, ZHANG Ruquan2, XU Qiuge1, QIAN Xiaoming1()
摘要:
为深入探究熔融双组分复合纤维原纤化的超细纤维成形技术,介绍了共混纺丝和共轭纺丝2种复合纺丝技术及其在生产超细纤维时的原料及工艺,具体阐述了海岛型复合纤维和裂离型复合纤维开纤工艺及特点,分析了聚合物及工艺对复合纤维生产超细纤维的影响。综述了熔融复合纤维原纤化用到的化学溶剂开纤、水溶开纤、机械开纤等开纤技术。概述了用熔融复合纺丝技术生产的超细纤维材料在合成革、过滤与分离、医用防护、卫生健康等领域中的应用,提出了复合纺丝技术生产超细纤维的发展方向,并指出复合纤维有望通过成形技术实现原料多元化、纤维细旦化、材料功能化等方面的不断发展和创新,将推动相关产业朝着更加可持续和环保的方向发展。
中图分类号:
[1] | HOEHNEMANN T, SCHNEBELE Y, WANG X, et al. Nanoval technology:an intermediate process between meltblown and spunbond[J]. Materials, 2023, 7(16): 2932. |
[2] | XIA L, XI P, CHENG B. High efficiency fabrication of ultrahigh molecular weight polyethylene submicron filaments/sheets by flash-spinning[J]. Journal of Polymer Engineering, 2016, 36(1): 97-102. |
[3] | WANG J J, WANG X Y, ZHONG D C, et al. Nanofibrous membranes modified by zwitterionic polyelectrolyte brushes for effective adsorption of ciprofloxacin hydrochloride[J]. Applied Surface Science, 2024. DOI:10.1016/j.apsusc.2024.159760. |
[4] | PERSSON M, LORITE G S, CHO S W, et al. Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6864-6872. |
[5] | KIM H C, KIM D, LEE J Y, et al. Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(3): 567-575. |
[6] | AGO M, BORGHEI M, HAATAJA J S, et al. Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes[J]. RSC Advances, 2016, 6(89): 85802-85810. |
[7] |
ZHENG Z, CHEN P, XIE M, et al. Cell environment-differentiated self-assembly of nanofibers[J]. Journal of the American Chemical Society, 2016, 138(35): 11128-11131.
doi: 10.1021/jacs.6b06903 pmid: 27532322 |
[8] | LEÓN-BOIGUES L, NAVARRO R, MIJANGOS C. Free radical nanocopolymerization in AAO porous materials: kinetic, copolymer composition and monomer reactivity ratios[J]. Polymer, 2021. DOI:10.1016/j.polymer.2021.123989. |
[9] | ZHANG S M, MENG C Z, WU Y H, et al. Efficient production of copolymerized PA6-based polymer fibers: oligomer control and direct melt spinning[J]. Polymer, 2024. DOI:10.1016/j.polymer.2024.126762. |
[10] | CUI L, ZHANG N, CUI W, et al. A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering[J]. Journal of Bionic Engineering, 2015, 12(1): 117-128. |
[11] | HE H, CHEN L, ZHANG Y, et al. Studies on melt spinning of sea-island fibers: I: morphology evolution of polypropylene/polystyrene blend fibers[J]. Fibers and Polymers, 2014, 15(9): 1941-1949. |
[12] | CHEN L, HE H, ZHANG Y, et al. Studies on melt spinning of sea-island fibers: II: Dynamics of melt spinning of polypropylene/polystyrene blend fibers[J]. Fibers and Polymers, 2015, 16(2): 449-462. |
[13] | GUO C C, ZHU J T, WU P F, et al. Degradable side-by-side fiber of poly(butylene succinate-co-terephthalate)/poly(L-lactic acid) with half-wrinkled surfaces and fully crimped structures[J]. Materials Letters, 2024. DOI:10.1016/j.matlet.2024.136085. |
[14] | ZHANG X, JIN G, MA W, et al. Fabrication and properties of poly(L-lactide) nanofibers via blend sea-island melt spinning[J]. Journal of Applied Polymer Science, 2015, 132(1): 357-384. |
[15] | FU H, ZHANG T, ZHANG S, et al. Current advances on sea-island microfiber nonwoven materials preparation technology and its applications: a review[J]. Journal of The Textile Institute, 2023, 115: 1-11. |
[16] | ZHANG Z, TU W, PEIJS T, et al. Fabrication and properties of poly(tetrafluoroethylene) nanofibres via sea-island spinning[J]. Polymer, 2017, 109: 321-331. |
[17] | SUGAWARA K, IKAGA T, KIM K H, et al. Fiber structure development in PS/PET sea-island conjugated fiber during continuous laser drawing[J]. Polymer, 2015, 79: 37-46. |
[18] | YASOSHIMA R, TAJIMA T, YAMAGUCHI H, et al. Nanofiber and nanofiber powder of syndiotactic polystyrene fabricated by laser-heated drawing of sea-island-type conjugated-spun fiber[J]. Journal of Fiber Science and Technology, 2018, 74(8): 186-195. |
[19] | AN H J, CHOI Y C, OH H J, et al. Structure development in high-speed melt spinning of high-molecular weight poly(ethylene terephthalate)/polypropylene islands-in-the-sea bicomponent fibers[J]. Polymer, 2022. DOI:10.1016/j.polymer.2021.124365. |
[20] | BAUTISTA J R, BRUENIG H, POETSCHKE P, et al. Improved sensitivity of liquid sensing melt-spun polymer fibers filled with carbon nanoparticles by considering solvent-polymer solubility parameters[J]. Materials Research Express, 2024. DOI:10.1088/2053-1591/acd7c4. |
[21] | ZHAO B B, HAN X, HU C G, et al. Hydrophilic modification of polyester/polyamide 6 hollow segmented pie microfiber nonwovens by UV/TiO2/H2O2[J]. Molecules, 2023, 9(23): 3826. |
[22] | 屠海燕, 李建邺, 黄华福, 等. PET/PBT双十字形复合纤维纺丝组件及喷丝板设计[J]. 纺织报告, 2022, 41(11): 1-3. |
TU Haiyan, LI Janye, HUANG Huafu, et al. PET/PBT double cross shaped composite fiber spinning module and spinneret plate design[J]. Textile Report, 2022, 41(11): 1-3. | |
[23] | IIMURO H. Business development of polyester nano fiber (NanofrontTM)[C]// Proceedings of International Nanofiber Symposium 2009. Japan:[s.n.], 2009: 16-18. |
[24] | HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B. Hybrid mixed media nonwovens composed of macrofibers and microfibers. part I: three-layer segmented pie configuration[J]. Journal of The Textile Institute, 2013, 104(9): 972-979. |
[25] | SHANG M Y, GAO Z Y, CHENG H L, et al. Relationship between microstructure evolution and properties enhancement of carbon nanotubes-filled polybutylene terephthalate/polypropylene blends induced by thermal annealing[J]. Journal of Applied Polymer Science, 2022, 139(8): 51689. |
[26] | TSAMPANAKIS I, WHITE O A. The mechanics of forming ideal polymer-solvent combinations for open-loop chemical recycling of solvents and plastics[J]. Polymers, 2021, 14(1): 1-20. |
[27] |
XU N, TAO Y N, WANG X C, et al. Construction of a novel substrate of unfigured islands-in-sea microfiber synthetic leather based on waste collagen[J]. ACS Omega, 2021, 6(40): 26086-26097.
doi: 10.1021/acsomega.1c03061 pmid: 34660969 |
[28] | KANG J M, KIM M G, LEE J E, et al. Alkaline hydrolysis and dyeing characteristics of sea-island-type ultraultra-fine fibers of PET tricot fabrics with black disperse dye[J]. Polymers, 2020, 12(6): 1-14. |
[29] | 卢志敏. PET/PA6桔瓣型双组分纺粘法非织造材料的开纤工艺与产品开发[D]. 天津: 天津工业大学, 2012: 3-20. |
LU Zhimin. PET/PA6 segmented pie spunbond nonwoven with split-fiber process and product development[D]. Tianjin: Tiangong University, 2012: 3-20. | |
[30] | LIU Y. Investigation of fiber splitting in side-by-side bicomponent meltblown nonwoven webs through post treatment[M]. USA: The University of Tennessee, 2004: 10-15. |
[31] | HUANG W, HUANG X X, WANG P, et al. Poly (glycolic acid) nanofibers via sea-island melt-spinning[J]. Macromolecular Materials and Engineering, 2018. DOI:10.1002/mame.201800425. |
[32] | 刘若冰, 朱谱新. 溶剂法裂离桔瓣型PET/PA6复合纤维[J]. 纺织学报, 1997, 18(4): 18-20. |
LIU Ruobing, ZHU Puxin. Solvent cleavage of orange-flap PET/PA6 composite fibers[J]. Journal of Textile Research, 1997, 18(4): 18-20. | |
[33] |
JUNAID M, MALIK R N, PEI D S. Health hazards of child labor in the leather products and surgical instrument manufacturing industries of Sialkot, Pakistan[J]. Environmental Pollution, 2017, 226: 198.
doi: S0269-7491(16)32521-0 pmid: 28432963 |
[34] | ZHANG X, JIN G, MA W, et al. Fabrication and properties of poly (L-lactide) nanofibers via blend sea-island melt spinning[J]. Journal of Applied Polymer Science, 2015. DOI:10.1002/app.41228. |
[35] | YANG F, ZHANG S S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and hu mic acids for soil remediation[J]. Science of the Total Environment, 2019, 686: 1140-1151. |
[36] | YAN M H, WANG J, SU X Y, et al. A 3D paddle-wheel type Cu(II)-based MOF with pcu topology as an efficient photocatalyst for antibiotics photodegradation[J]. New Journal of Chemistry, 2023, 23(47): 11134-11142. |
[37] |
MAL J, NANCHARAIAH Y V, MAHESHWARI N, et al. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor[J]. Journal of Hazardous Materials, 2017, 327: 79-88.
doi: S0304-3894(16)31193-1 pmid: 28043045 |
[38] | LI M L, JIN E Q, LIAN Y Y. Effects of molecular structure of aliphatic dicarboxylic ester on the properties of water-soluble polyester for warp sizing[J]. Journal of The Textile Institute, 2016, 12(107): 1490-1500. |
[39] | GUO D, WANG Q, BAI S B. Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy[J]. Polymers for Advanced Technologies, 2013, 24(3): 339-347. |
[40] | LIU H L, CHEN R L, SUN X Y, et al. Preparation and properties of PBAT/PLA composites modified by PVA and cellulose nanocrystals[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.51474. |
[41] | JAVANBAKHT T, DAVID E. Rheological and physical properties of a nanocomposite of graphene oxide nanoribbons with polyvinyl alcohol[J]. Journal of Thermoplastic Composite Materials, 2022, 35(5): 651-664. |
[42] | LIU Q, CHEN N, BAI S B, et al. Effect of silver nitrate on the thermal processability of poly(vinyl alcohol) modified by water[J]. RSC Advances, 2018, 8(5): 2804-2810. |
[43] | ZHANG X, LIU L, WENG L. Preparation of water-soluble electrical steel coating with SiO2 modified by glycine[J]. Polymer Composites, 2018, 39(4): 229-239. |
[44] | 马清芳, 程贞娟, 秦伟明, 等. 水溶性聚酯的制备及其性能[J]. 纺织学报, 2007, 28(6): 20-22,27. |
MA Qingfang, CHENG Zhenjuan, QIN Weiming, et al. Preparation and characterization of water-soluble polyester[J]. Journal of Textile Research, 2007, 28(6): 20-22,27. | |
[45] | 齐庆莹, 陈文兴, 秦伟明, 等. 水溶性聚酯的流变行为[J]. 纺织学报, 2008, 29(8): 11-14. |
QI Qingying, CHEN Wenxing, QIN Weiming, et al. Rheological behavior of water-soluble polyesters[J]. Journal of Textile Research, 2008, 29(8): 11-14. | |
[46] | 赵宝宝, 钱幺, 钱晓明, 等. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(5): 56-61. |
ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of bicomponent spunbond-spunlance nonwoven materials with gradient struc-ture[J]. Journal of Textile Research, 2018, 39(5): 56-61. | |
[47] | 王敏. PET/PA6双组份纺粘水刺非织造材料工艺及其性能的研究[D]. 杭州: 浙江理工大学, 2016: 2-6. |
WANG Min. Research on the process and properties of PET/PA6 bicomponent spunbond-spunlace nonwoven material[D]. Hangzhou: Zhejiang University of Technology, 2016: 2-6. | |
[48] | 张恒. 纺粘管式牵伸机理及PET/PA6双组份非织造材料的研究[D]. 天津: 天津工业大学, 2015: 11-16. |
ZHANG Heng. Research on spunbond tubular drafting mechanism and PET/PA6 two-component nonwoven materials[D]. Tianjin: Tiangong University, 2015: 11-16. | |
[49] | PRAHSARN C, KLINSUKHON W, PADEE S, et al. Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability[J]. Journal of Materials Science, 2016, 51(24): 10910-10916. |
[50] | AYAD E, CAYLA A, RAULT F, et al. Effect of viscosity ratio of two immiscible polymers on morphology in bicomponent melt spinning fibers[J]. Advances in Polymer Technology, 2018, 37(4): 1134-1141. |
[51] | SCHILDE W, ERTH H, HEYE U. Spunbond nonwovens made from splittable bi-component filaments[J]. Chemical Fibers International, 2007, 57(1): 61-64. |
[52] | 卜义华. PET/PA6中空桔瓣型纺粘复合纤维的制备及其开纤研究[D]. 天津: 天津工业大学, 2012: 26-35. |
BU Yihua. Preparation of PET/PA6 hollow orange petal spunbond composite fiber and its open fiber research[D]. Tianjin: Tiangong University, 2012: 26-35. | |
[53] | DUO Y C, QIAN X M, ZHAO B B, et al. Easily splittable hollow segmented-pie microfiber nonwoven material with excellent filtration and thermal-wet comfort for energy savings[J]. Journal of Materials Research and Technology, 2022, 17: 876-887. |
[54] | DUO Y C, QIAN X M, ZHAO B B, et al. Preparation and properties of a fluffy HSPET/PA6 hollow segmented pie microfiber nonwovens[J]. Textile Research Journal, 2022, 92(17/18): 3221-3233. |
[55] | 钱雯瑾. 分裂型纤维水刺缠结工艺及裂离机理研究[D]. 上海: 东华大学, 2011: 3-10. |
QIAN Wenjin. Study on split-fiber spunlace process and splitting theory[D]. Shanghai: Donghua University, 2011: 3-10. | |
[56] | 朵永超, 钱晓明, 赵宝宝, 等. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(9): 81-87. |
DUO Yongchao, QIAN Xiaoming, ZHAO Baoao, et al. Preparation and properties of microfiber synthetic leather base[J]. Journal of Textile Research, 2020, 41(9): 81-87. | |
[57] | 赵宝宝, 钱幺, 刘凡, 等. 中空桔瓣型超细纤维/水性聚氨酯合成革的制备及性能[J]. 复合材料学报, 2017, 34(11): 2392-2400. |
ZHAO Baobao, QIAN Yao, LIU Fan, et al. Preparation and properties of hollow segmented-pie microfiber/waterborne polyurethane synthetic lea-ther[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2392-2400. | |
[58] |
田新娇, 柳静献, 毛宁, 等. 基于海岛纤维的新型滤料实验研究[J]. 东北大学学报(自然科学版), 2017, 38(8): 1163-1166.
doi: 10.12068/j.issn.1005-3026.2017.08.021 |
TIAN Xinjiao, LIU Jingxian, MAO Ning, et al. Experimental study on the new filter made from sea-islandfibers[J]. Journal of Northeastern University (Natural Science), 2017, 38(8): 1163-1166. | |
[59] | YANG Y, YE L, KUNLI G, et al. Dopamine intercalated polyelectrolyte multilayered nanofiltration membranes toward high permselectivity and ion-ion selectivity[J]. Journal of Membrane Science, 2022. DOI:10.1016/j.memsci.2022.120337. |
[60] |
ZHANG H, CAO Y, ZHEN Q, et al. Facile preparation of PET/PA6 bicomponent microfilament fabrics with tunable porosity for comfortable medical protective clothing[J]. ACS Applied Bio Materials, 2022, 5(7): 3509-3518.
doi: 10.1021/acsabm.2c00447 pmid: 35793521 |
[61] | 安琪, 付译鋆, 张瑜, 等. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(8): 188-196. |
AN Qi, FU Yijun, ZHANG Yu, et al. Research progress of nonwovens for medical protective gar-ment[J]. Journal of Textile Research, 2020, 41(8): 188-196. | |
[62] | 杨旭红. 非织造擦拭巾的研究进展[J]. 南通大学学报(自然科学版), 2022, 21(3): 1-13. |
YANG Xuhong. Research development of nonwoven wipes[J]. Journal of Nantong University (Natural Science Edition), 2022, 21(3): 1-13. |
[1] | 葛美彤, 董智佳, 丛洪莲, 丁玉琴. 凹凸点阵双面织物的结构与湿热管理评价[J]. 纺织学报, 2024, 45(07): 47-54. |
[2] | 李琛, 王冬, 仲鸿天, 董朋, 付少海. 超细纤维合成革含浸用水性聚氨酯的合成及其应用[J]. 纺织学报, 2024, 45(03): 129-136. |
[3] | 秦子轩, 张恒, 李晗, 翟倩, 甄琪, 钱晓明. 非溶相共混熔喷非织造技术的研究进展[J]. 纺织学报, 2024, 45(03): 219-226. |
[4] | 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29. |
[5] | 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38. |
[6] | 高强, 范浩军, 颜俊, 陈玉国, 郑萍. 三维超疏水超细纤维绒面革的仿生构建[J]. 纺织学报, 2022, 43(10): 126-132. |
[7] | 石磊, 张琳炜, 刘亚, 夏磊, 庄旭品. 分离膜湿法非织造支撑体的结构设计与应用[J]. 纺织学报, 2022, 43(06): 15-21. |
[8] | 俞琰, 王西朝, 张瑞云, 李蓉丽, 程隆棣. 云南野生火草纤维及其绒网的结构与性能[J]. 纺织学报, 2022, 43(04): 10-14. |
[9] | 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104. |
[10] | 于金超, 姬洪, 陈康, 甘宇. 聚醚酯/聚对苯二甲酸丁二醇酯并列复合纤维的制备及其性能[J]. 纺织学报, 2021, 42(04): 42-47. |
[11] | 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34. |
[12] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[13] | 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26. |
[14] | 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196. |
[15] | 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24. |
|