纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 89-98.doi: 10.13475/j.fzxb.20230507501

• 纤维材料 • 上一篇    下一篇

基于离子液体微溶焊接的可降解薄膜制备及其性能

赵攀1, 谭文丽2, 赵心蕊1, 付金凡1, 刘成显1, 袁久刚1()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.江苏中纺联检验技术服务有限公司, 江苏 苏州 215100
  • 收稿日期:2023-05-29 修回日期:2023-10-31 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 袁久刚(1982—),男,副教授,博士。主要研究方向为天然纤维改性。E-mail:jiugangyuan@jiangnan.edu.cn
  • 作者简介:赵攀(1999—),男,硕士生。主要研究方向为废弃纺织品的回用。
  • 基金资助:
    国家自然科学基金项目(31771039)

Preparation and properties of degradable film by micro-dissolution thermal welding using ionic liquid

ZHAO Pan1, TAN Wenli2, ZHAO Xinrui1, FU Jinfan1, LIU Chengxian1, YUAN Jiugang1()   

  1. 1. School of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Suzhou Zhongke Textile Technology Service Co., Ltd., Suzhou, Jiangsu 215100, China
  • Received:2023-05-29 Revised:2023-10-31 Published:2024-08-15 Online:2024-08-21

摘要:

针对废旧棉纺织品回收利用率低、再生困难及再生产品品质差等问题,采用离子液体微溶热焊接工艺,成功制备了一种高强度的全纤维素可降解疏水类塑料复合薄膜材料。首先,将废旧棉织物在1-丁基-3-甲基咪唑氯盐([BMIM]Cl)离子液体水溶液中浸泡,然后加热去除水分、激活离子液体,使纤维素发生部分溶解,再经热压将溶解部分与未溶解纤维素基质焊接黏合,在热压过程中可同时进行聚二甲基硅氧烷(PDMS)疏水功能化改性,得到全纤维素可降解疏水类塑料薄膜材料,并对其形态结构、力学性能及降解性能等进行测试与分析。结果表明:薄膜材料表现出优良的力学性能,其最大拉伸强度达到39 MPa,拉伸断裂伸长率约为40%,最大弯曲强度高达120 MPa,弯曲断裂伸长率约为5%,水接触角为110°,水蒸气透过率低于10%,具备良好的疏水性和防潮性;同时,该薄膜材料可完全生物降解,土壤填埋60 d后降解率达到86%。该方法不仅环境友好,还有助于高效快速实现废旧棉织物的高附加值回用,具有重要的应用前景。

关键词: 废旧棉织物回用, 离子液体, 热焊接, 聚二甲基硅氧烷, 可降解薄膜

Abstract:

Objective China produces more than 47.6 million tons of waste textiles every year, including 80% of waste polyester and cotton textiles. Whilst the recycling of waste polyester has made progress, the recycling of waste cellulose fabrics is still difficult. In view of the low recycling rate of waste cotton textiles, the difficulty of regeneration and the poor quality of recycled products, a simple and efficient micro-dissolution thermal "welding" process using ionic liquid (IL) for preparing a high-strength all-cellulose degradable hydrophobic "plastic-like" film was proposed.

Method In this research, 1-Butyl-3-methylimidazolium chloride ([BMIM]Cl) was the main solvent for preparing the self-reinforcing all-cellulosic "plastic-like" film material by micro-dissolution thermal "welding". Firstly, the waste cotton fabric was soaked in [BMIM]Cl aqueous solution system, then heated and de-watered to activate the IL to make the cellulose partially dissolve, then the dissolved part was bonded with the undissolved cellulose by hot pressing, and the hydrophobic functionalization of polydimethylsiloxane(PDMS) was carried out simultaneously. The mechanical properties, contact angles and degradation of film were tested, and the structure and properties of the films were further characterized by SEM, XRD and TGA, etc.

Results The all-cellulose degradable hydrophobic "plastic-like" film material prepared from waste cotton fabrics had a smooth and uniform surface. The "plastic-like" film material demonstrated certain plasticity and excellent comprehensive mechanical properties. The microscopic appearance of the partially dissolved cellulose and the undissolved part successfully bonded together by hot press-thermal "welding" were clearly visible. XRD results indicated that the dissolved part of the cellulose of the film material was transformed from cellulose type I to cellulose type II, and the undissolved part still retained part of the cellulose type I structure. The films demonstrated excellent thermal stability, where thermal degradation temperature was shown up to 350 ℃, much higher than the temperature standard used by the industry. The hydrophobic functionalization was finished onto the surface of the film using PDMS. The film had good waterproof performance, and the contact angle was up to 110° and water vapor transmittance was less than 10%, showing excellent hydrophobicity and humidity resistance. The all-cellulose degradable hydrophobic "plastic-like" film material demonstrated better overall resistance in organic chemicals, and certain resistance in inorganic chemicals, but the material should not be used in strong acid and strong oxidation environments. It also had excellent comprehensive properties then some commercial bioplastic materials such as polypropylene(PP) and polylactic acid(PLA), and its mechanical properties, natural degradability and sustainable durability were particularly outstanding.

Conclusion A high-strength all-cellulose degradable hydrophobic "plastic-like" film had been successfully prepared by micro-dissolution thermal "welding" using ionic liquid. The film exhibited excellent mechanical properties, with tensile strength up to 39 MPa, break elongation was 40%. The bending strength was up to 120 MPa, break elongation was more than 5%. It also had good hydrophobicity and moisture resistance, with contact angle up to 110° and water vapor transmittance was less than 10%. In particular, it was completely biodegradable. The degradation rate in 60 days of soil landfill was 85.6%, and it also showed stable heat resistance and chemical resistance. Therefore, this work provided a promising and useful method to the recycling and re-utilization of waste textiles, which was environmentally friendly. Compared with the traditional method of completely dissolving and regenerating cellulose to prepare films, the processing efficiency was higher and the strength protection of raw fiber was better. More importantly, the film prepared by recycling waste cotton fabrics could be used in the packaging field, such as packaging materials and transportation plates, helping to eliminate environmental pollution from the source and achieve sustainable development of the cotton cellulose cycle.

Key words: recycling of waste cotton fabric, ionic liquid, thermal welding, polydimethylsiloxane, biodegradable film material

中图分类号: 

  • O636.11

图1

废旧棉织物回收利用策略图"

表1

不同处理样薄膜材料的厚度、模量及断裂伸长率"

试样的
处理方式
平均厚
度/mm
拉伸性能 弯曲性能
弹性
模量/
MPa
断裂伸
长率/
%
弯曲
模量/
MPa
断裂伸
长率/
%
水浴 0.30±0.03 3 746 12.2 2 726 4.6
PEG2000 0.32±0.02 1 355 51.2 1 445 7.3
PEG20000 0.33±0.02 668 32.9 1 056 6.1
PEG2000+PDMS 0.32±0.02 320 43.9 580 5.2

图2

薄膜材料实物样及其力学性能展示"

图3

不同处理样的力学性能"

图4

废旧棉织物和不同处理样的微观结构"

图5

废旧棉织物和不同处理样的XRD图谱"

图6

废旧棉织物和不同处理样的热稳定性"

图7

防水性能"

图8

防潮性能"

图9

耐化学试剂性能"

图10

薄膜材料降解形态变化和填埋60 d微观结构变化"

图11

薄膜材料的降解率"

图12

综合性能"

[1] 樊威, 刘红霞, 陆琳琳, 等. 废旧天然纤维纺织品回收利用现状及高值化利用策略[J]. 纺织学报, 2022, 43(5): 49-56.
FAN Wei, LIU Hongxia, LU linlin, et al. Progress in recycling waste natural fiber textiles and high-value utilization strategy[J]. Journal of Textile Research, 2022, 43(5): 49-56.
[2] LIU Hongxia, FAN Wei, MIAO Yaping, et al. Closed-loop recycling of colored regenerated cellulose fibers from the dyed cotton textile waste[J]. Cellulose, 2023(30): 2597-2610.
[3] HAWARD Marcus. Plastic pollution of the world's seas and oceans as a contemporary challenge in ocean governance[J]. Nat Commun, 2018. DOI:10.1038/s41467-018-03104-3.
[4] 张晓程, 周彦, 田卫国, 等. 废旧棉/涤混纺织物的组分快速分离及其含量测定[J]. 纺织学报, 2022, 43(7): 1-8.
ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, et al. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics[J]. Journal of Textile Research, 2022, 43(7): 1-8.
[5] FILHO Walter Leal, ELLAMS Dawn, HAN Sara, et al. A review of the socio-economic advantages of textile recycling[J]. Journal of Cleaner Production, 2019(218): 10-20.
[6] WANG Sen, LU Ang, ZHANG Lina. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016(53): 169-206.
[7] CHEN Xiong, CHEN Jinghuan, YOU Tingting, et al. Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution[J]. Carbohydrate Polymers, 2015(125): 85-91.
[8] SHARMA Priyanka R, VARMA Anjani J. Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups[J]. Carbohydrate Polymers, 2014(114): 339-343.
[9] ZAINAL Sarah Husnaini, MOHD Nurul Hanisah, SUHAILI Nabilah, et al. Preparation of cellulose-based hydrogel: a review[J]. Journal of Materials Research and Technology, 2021(10): 935-952.
[10] SWATLOSKI Richard P, SPEAR Scott K, HOLBREY John D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society, 124(18): 4974-4975.
[11] PODGORŠEK A, JACQUEMIN J, PÁDUA A Padua H, et al. Mixing enthalpy for binary mixtures containing ionic liquids[J]. Chemical Reviews, 2016, 116(10): 6075-6106.
doi: 10.1021/acs.chemrev.5b00379 pmid: 27144455
[12] HASLINGER Simone, HUMMEL Michael, ANGHELESCU-HAKALA Adina, et al. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers[J]. Waste Management, 2019(97): 88-96.
[13] FAKIROV Stoyko. Nano- and microfibrillar single-polymer composites: a review[J]. Macromolecular Materials & Engineering, 2013, 298(1): 9-32.
[14] ZHANG Yafei, ZHAO Yunhong, BAI Shulin, et al. Numerical simulation of thermal conductivity of graphene filled polymer composites[J]. Composites Part B Engineering, 2016(106): 324-331.
[15] 王佳鹏. 多功能性超疏水PDMS表面的制备与研究[D]. 太原: 太原理工大学, 2020: 1-2.
WANG Jiapeng. Preparation of multifunctional superhydrophobic PDMS surface[D]. Taiyuan: Taiyuan University of Technology, 2020: 1-2.
[16] WANG Binqi, NIE Yi, KANG Zhaoqing, et al. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers[J]. International Journal of Biological Macromolecules, 2023(225): 1374-1383.
[17] 吕阳成, 吴影新. 凝固浴组成对NMMO法纤维素膜形貌的影响[J]. 高校化学工程学报, 2007(3): 398-403.
LÜ Yangcheng, WU Yingxin. Influence of coagulation bath on morphology of cellulose membranes prepared by nmmo method[J]. Journal of Chemical Engineering of Chinese Universities, 2007(3): 398-403.
[18] LIU Detao, XIA Kunfeng, CAI Weihua, et al. Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids[J]. Carbohydrate Polymers, 2012, 87(2): 1058-1064.
[19] FRENCH Alfred D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 2014(21): 885-896.
[20] JIANG Feng, HSIEH Youlo. Chemically and mechanically isolated nanocellulose and their self-assembled structures[J]. Carbohydrate Polymers, 2013(95): 32-40.
[21] GHADERI Moein, MOUSAVI Mohammada, YOUSEFI Hossein, et al. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application[J]. Carbohydrate Polymers, 2014(104): 59-65.
[22] ZHOU Guowen, ZHANG Haishan, SU Zhiping, et al. A biodegradable, waterproof, and thermally processable cellulosic bioplastic enabled by dynamic covalent modification[J]. Advanced Materials, 2023. DOI:10.1002/adma.02301398.
[1] 马凯, 邓璐璐, 王学琳, 石国民, 邹光龙. 棉浆纤维素/质子型离子液体溶液的流变行为[J]. 纺织学报, 2024, 45(05): 10-18.
[2] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[3] 韩俊峰, 王云霞, 吴伟, 胡超凡, 封其春, 杜兆芳. 纤维素/茶渣复合薄膜的可控制备及其食品保鲜性能[J]. 纺织学报, 2024, 45(03): 28-35.
[4] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[5] 夏勇, 赵迎, 徐利云, 徐思峻, 姚理荣, 高强. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(01): 64-70.
[6] 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28.
[7] 张晓程, 周彦, 田卫国, 乔昕, 贾锋伟, 许丽丽, 张金明, 张军. 废旧棉/涤混纺织物的组分快速分离及其含量测定[J]. 纺织学报, 2022, 43(07): 1-8.
[8] 梁姣姣, 汪菁晶, 夏于旻, 朱新远, 闫冰, 孙利明, 王燕萍, 何勇, 王依民. 基于聚离子液体的常压阴离子可染聚丙烯纤维制备及其性能[J]. 纺织学报, 2022, 43(07): 17-21.
[9] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[10] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[11] 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
[12] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[13] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[14] 袁久刚, 季吉, 薛琪, 姜哲, 范雪荣, 高卫东. 羊毛角蛋白在巯基乙酸胆碱中的溶解再生[J]. 纺织学报, 2021, 42(01): 35-39.
[15] 欧阳鹏飞, 张玉芳, 贾春紫, 张嘉煜. 用竹浆粕/离子液体复配体系纺制的再生纤维及其性能[J]. 纺织学报, 2020, 41(01): 21-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!