纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 10-17.doi: 10.13475/j.fzxb.20230602601

• 纤维材料 • 上一篇    下一篇

基于家蚕平板丝结构的柔性压力传感器制备及其传感性能

汪宇佳1,2,3,4, 王怡2,3,4, 王雅思2,3, 代方银1,2,3,4, 李智2,3,4()   

  1. 1.西南大学 资源昆虫高效养殖与利用全国重点实验室, 重庆 400715
    2.西南大学 蚕桑纺织与生物质科学学院, 重庆 400715
    3.西南大学 重庆市生物质纤维材料与现代纺织工程技术研究中心, 重庆 400715
    4.西南大学 农业部蚕桑生物学与遗传育种重点实验室, 重庆 400715
  • 收稿日期:2023-06-13 修回日期:2023-10-25 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 李智(1984—),男,副教授,博士。研究方向为智能纺织品、生物医用材料的开发。E-mail: tclizhi@swu.edu.cn
  • 作者简介:汪宇佳(1998—),女,硕士。主要研究方向为智能可穿戴传感器的开发。
  • 基金资助:
    重庆市教育委员会科学技术研究项目(KJQN202100203);家蚕基因组生物学国家重点实验室开放课题资助项目(sklsgb-2019KF13);重庆市留创计划创新类资助项目(cx2019090)

Preparation and sensing performance of flexible pressure sensor based on natural flat silk cocoon structure

WANG Yujia1,2,3,4, WANG Yi2,3,4, WANG Yasi2,3, DAI Fangyin1,2,3,4, LI Zhi2,3,4()   

  1. 1. State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
    2. College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
    3. Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Southwest University, Chongqing 400715, China
    4. Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
  • Received:2023-06-13 Revised:2023-10-25 Published:2024-09-15 Online:2024-09-15

摘要:

为获得基于天然平板丝结构的柔性压力传感器,以家蚕平板丝为柔性基底,在家蚕吐丝过程中循环喷洒过渡金属碳化物/氮化物和银纳米线作为导电材料,制备出具有天然多层结构的导电传感层复合材料。借助扫描电子显微镜和傅里叶红外光谱仪对制备的平板丝传感层进行形貌观察和结构分析,并通过优化传感层的层数开发出性能更优异的传感器。结果表明:具有2层传感层的传感器的灵敏度最高,在42.03~60.00 kPa的高压范围内灵敏度可达0.20 kPa-1,比仅有1层传感层的传感器灵敏度提高了20倍;该传感器响应/恢复时间均在1 s以内,且在施加不同压缩速率时仍能保持电流值稳定,可准确响应动态变化的压力,在超过1 500次压力加载/卸载循环后传感性能依旧保持稳定;该传感器可很好地贴附到人体关节表面用于监测人体运动状态,通过按压时间长短来模拟摩斯密码,可用于信息加密传输和困境救援;将传感器制成传感阵列,可应用于压力位置轨迹追踪。

关键词: 家蚕, 平板丝, 压力传感器, 智能可穿戴, 过渡金属碳化物/氮化物, 银纳米线

Abstract:

Objective Silk fabric is an ideal substrate for fabricating flexible and wearable pressure sensors because of its excellent comfort and skin-friendly properties. However, it requires complex and time-consuming process to prepare the silk fabrics from the silkworm cocoon. Flat silk cocoon (FSC) formed by the free movement of silkworm is a natural non-woven structure with high porosity and favorable flexibility. In this paper, FSC without post-treatment was used as a flexible substrate to develop flexible pressure sensor together with conductive materials MXene and AgNWs.

Method During silkworm spinning, MXene and AgNWs dispersions were repeatedly sprayed on the surface of silk fibers at a fixed time interval. MXene and AgNWs were coated on the surface of silk fibers by natural adhesion of sericin during this biospinning process, and then MA-FSC with multil-layered structure were prepared. The MA-FSC pressure sensor was assembled face-to-face with the interdigitated electrode, and its sensing performance and real-time monitoring application were studied.

Results The sprayed MXene and AgNWs alternatively distributed on the surface of flat silk cocoon, and the prepared MA-FSC exhibited a hierarchical structure with five layers. The optimizing experiment showed that the pressure detection range of the sensor gradually was increased with the increase in the number of sensing layers. However, too many or too few sensing layers led to the low sensitivity of sensor. When the number of sensing layers was too small (such as 1 layer), the conductive layer active material content inside the sensor was insufficient, resulting in a small number of conductive paths formed during the compression process, and the sensor showed low sensitivity. When too many sensing layers (such as 3 layers) was fabricated, more conductive paths existed inside the sensor even when no pressure, and the signal change of the sensor was not obvious when pressure was applied. Therefore, the 3-layer MA-FSC pressure sensor demonstrated little difference between the no-pressure state and the saturated pressure state. The 2-layer MA-FSC pressure sensor was proved to have the best sensitivity (0.20 kPa-1). The response/recovery time was shorter than 1 s, and it could react quickly to changes in external pressure. In addition, the 2-layer MA-FSC pressure sensor maintained a stable signal output under the gradient increasing compression rate and gradient increasing pressure, with the cycle durability over 1 500 times. Owing to the excellent sensing performance, MA-FSC pressure sensor would be expected to to monitor human body movement status (such as finger pressing, finger bending, elbow bending and knee bending). The 2-layer MA-FSC pressure sensor could also be combined with Morse code to output some signals similar to ″SOS″, ″SWU″ and ″WYJ″, which were used in the field of encrypted transmission of information. 16 pressure sensor units were fitted into a 4×4 sensing array for pressure distribution visualization.

Conclusion Using natural flat silk cocoon as a flexible substrate, the MA-FSC pressure sensor was prepared. The optimization indicates that the prepared sensor with two sensing layers has the best sensing performance, which can be applied in the fields of human body movement status monitoring, information encrypted transmission, and real-time pressure trajectory tracking. This research broadens the application field of silk and provides new ideas and inspiration for the development of sensors based on natural material substrates.

Key words: silkworm, flat silk cocoon, pressure sensor, smart wearable, transition metal carbide/nitride, silver nanowires

中图分类号: 

  • TS141.8

图1

MA-FSC压力传感器的制备流程图"

图2

原平板丝和MA-FSC的SEM照片"

图3

平板丝和MA-FSC的傅里叶红外光谱图"

图4

不同层数MA-FSC压力传感器的灵敏度曲线"

图5

MA-FSC压力传感器的响应/恢复时间"

图6

MA-FSC压力传感器的稳定性测试结果"

图7

MA-FSC压力传感器的循环稳定性"

图8

MA-FSC压力传感器的传感原理示意图及SEM照片"

图9

MA-FSC压力传感器在人体运动监测中的应用"

图10

敲击不同摩斯密码时MA-FSC压力传感器的信号响应"

图11

MA-FSC压力传感器在传感阵列中的应用"

[1] YANG T, DENG W, CHU X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics[J]. ACS Nano, 2021, 15 (7): 11555-11563.
doi: 10.1021/acsnano.1c01606 pmid: 34128640
[2] WANG G, ZHANG Q, WANG Q, et al. Bio-based hydrogel transducer for measuring human motion with stable adhesion and ultrahigh toughness[J]. ACS Applied Materials & Interfaces, 2021, 13 (20): 24173-24182.
[3] WEI C, LIN W, LIANG S, et al. An all-in-one multifunctional touch sensor with carbon-based gradient resistance elements[J]. Nano-Micro Letters, 2022. DOI: 10.1007/s40820-022-00875-9.
[4] LI J X, LIU Y X, YUAN L, et al. A tissue-like neurotransmitter sensor for the brain and gut[J]. Nature, 2022, 606: 94-101.
[5] 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021. DOI: 10.7498/aps.70.20210023.
LI Fengchao, KONG Zhen, WU Jinhua, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021. DOI: 10.7498/aps.70.20210023.
[6] DUAN Z H, JIANG Y D, HUANG Q, et al. Facilely constructed two-sided microstructure interfaces between electrodes and cellulose paper active layer: eco-friendly, low-cost and high-performance piezoresistive sensor[J]. Cellulose, 2021, 28 (10): 6389-6402.
[7] LI X P, LI Y, LI X F, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with mxene sheets[J]. Journal of Colloid and Interface Science, 2019, 542: 54-62.
[8] HWANG J, KIM Y, YANG H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B:Engineering, 2021. DOI: 10.1016/j.compositesb.2021.108607.
[9] XU M T, CAI H H, LIU Z L, et al. Skin-friendly corrugated multilayer microspherical sensor fabricated with silk fibroin, poly (lactic-co-glycolic acid), polyaniline, and kappa-carrageenan for wide range pressure detection[J]. International Journal of Biological Macromolecules, 2022, 194: 755-762.
[10] WANG Z W, CONG Y, FU J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of Materials Chemistry B, 2020, 8 (16): 3437-3459.
doi: 10.1039/c9tb02570g pmid: 32100788
[11] CAI H, WANG Y, XU M, et al. Low cost, green and effective preparation of multifunctional flexible silk fabric electrode with ultra-high capacitance retention[J]. Carbon, 2022, 188: 197-208.
[12] WU R, MA L, PATIL A, et al. All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers[J]. ACS Applied Materials & Interfaces, 2019, 11 (36): 33336-33346.
[13] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177.
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177.
[14] WU Z G, WEI L S, TANG S W, et al. Recent progress in Ti3C2Tx MXene-based flexible pressure sensors[J]. ACS Nano, 2021, 15 (12): 18880-18894.
[15] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905197.
[16] BI L, YANG Z, CHEN L, et al. Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins[J]. Journal of Materials Chemistry A, 2020, 8 (38): 20030-20036.
[17] DIONIGI C, POSATI T, BENFENATI V, et al. A nanostructured conductive bio-composite of silk fibroin-single walled carbon nanotubes[J]. Journal of Materials Chemistry B, 2014, 2 (10): 1424-1431.
doi: 10.1039/c3tb21172j pmid: 32261458
[18] LIU Z, SHANG S, CHIU K-l, et al. Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide microfiber mat via electrospinning for protective fabric[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2019.110308.
[19] 方方, 朱小丹, 王梦颖. 一种新型柔性织物传感器的静态性能测试与评估[J]. 丝绸, 2019, 56(8):13-18.
FANG Fang, ZHU Xiaodan, WANG Mengying. Static performance test and evaluation of a new flexible fabric sensor[J]. Journal of Silk, 2019, 56(8): 13-18.
[20] LIU Y, TAO L Q, WANG D Y, et al. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure[J]. Applied Physics Letters, 2017. DOI: 10.1063/1.4978374.
[21] XU M, CAI H, LIU Z, et al. Breathable, degradable piezoresistive skin sensor based on a sandwich structure for high-performance pressure detection[J]. Advanced Electronic Materials, 2021. DOI: 10.1002/aelm.202100368.
[22] ZHANG H M, ZHANG Y, ZHANG J W, et al. Preparation and characterization of flexible pressure sensor based on silver nanowires/nonwoven fabric[J]. Polymer Composites, 2021, 42 (5): 2523-2530.
[1] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[2] 施楚, 李俊, 王云仪. 基于温度监测的糖尿病足预防性智能鞋袜研究进展[J]. 纺织学报, 2024, 45(07): 240-247.
[3] 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226.
[4] 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(03): 236-243.
[5] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[6] 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133.
[7] 郑贤宏, 唐金好, 李长龙, 王炜. 中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能[J]. 纺织学报, 2023, 44(11): 142-150.
[8] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[9] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[10] 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205.
[11] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[12] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[13] 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9.
[14] 陈足娇, 张睿, 卓雯雯, 张龙琳, 周莉. 可穿戴足底压力监测系统研究进展[J]. 纺织学报, 2021, 42(09): 31-38.
[15] 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!