纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 129-136.doi: 10.13475/j.fzxb.20231100101

• 染整工程 • 上一篇    下一篇

基于底物激活的蛋白酶法羊毛地毯生态丝光处理

王乐1(), 段志欣2, 姚金波3, 刘建勇3, 卢建军1   

  1. 1.太原理工大学 轻纺工程学院, 山西 太原 030600
    2.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室, 山西 太原 030024
    3.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2023-11-01 修回日期:2024-05-23 出版日期:2024-09-15 发布日期:2024-09-15
  • 作者简介:王乐(1991—),男,讲师,博士。主要研究方向为纺织品生态加工技术。E-mail: wangle9106@163.com
  • 基金资助:
    山西省基础研究计划项目(20210302124459)

Eco-friendly mercerization of wool carpet using protease method based on substrate activation

WANG Le1(), DUAN Zhixin2, YAO Jinbo3, LIU Jianyong3, LU Jianjun1   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030600, China
    2. State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    3. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2023-11-01 Revised:2024-05-23 Published:2024-09-15 Online:2024-09-15

摘要:

针对蛋白酶难以降解高硫羊毛角蛋白的问题,构建了由底物激活剂LKZ-630与蛋白酶Savinase 16L组成的蛋白酶催化体系,采用该体系联合机械刮毯和刷毯对羊毛地毯进行丝光处理。通过酶活力、酶吸附性、羊毛水解度、地毯颜色、X射线衍射能谱及红外谱图等测试,分析了LKZ-630对酶水解羊毛的促进作用以及丝光处理前后羊毛地毯的外观及微观结构变化。结果表明:LKZ-630可打开羊毛纤维中二硫键,2 g/L的LKZ-630可使酶对羊毛的活力提高1 575倍,可使羊毛纤维对酶的平衡吸附量提高12.7倍,使酶对羊毛的水解速率提高36.3倍;刮毯和刷毯作用使得处理后羊毛地毯中纤维细度由根部至尖端逐渐变细,处理后地毯触感柔软、有层次感且有蚕丝般光泽,其CIE亮度值增加6.99,白度值增加50.12,黄度值减小14.84。

关键词: 蛋白酶, 羊毛, 地毯, 蛋白酶催化体系, 丝光处理, 底物激活

Abstract:

Objective In order to fundamentally solve the severe environmental pollution problem caused by the existing chlorinated wool carpet mercerizing finishing, much research has been focused on ecological mercerizing. The protease method is a mild and green finishing process. However, the low hydrolysis efficiency of protease on wool keratin remains to be a technical bottleneck, and it is necessary to develop the protease method for the wool carpet mercerizing process with ecological characteristics. It is conducive to promoting green and sustainable development of the textile industry.

Method A protease-catalyzed system consisting of substrate activator LKZ-630 and protease Savinase 16L was constructed and used for mercerizing wool carpets by combining mechanical scraping and brushing. The role of LKZ-630 in the enzymatic degradation of wool was studied by measuring the sulfhydryl content on the wool surface, protease activity, protease adsorption, and degree of hydrolysis of wool. The structure of wool carpets before and after treatment was examined by scanning electron microscopy, Fourier infrared spectroscopy, and X-ray diffraction energy spectroscopy.

Results The results showed that LKZ-630 could open disulfide bonds in wool fibers and convert them to sulfhydryl groups. It facilitated the rapid degradation of high-sulfur wool tissues by proteases. By adding LKZ-630, the protease activity (substrate of wool fibers) increased by 1 575 times when the concentration of LKZ-630 was 2 g/L. Under the treatment conditions of LKZ-630 2 g/L, Savinase 16L 1 g/L, and 50 ℃, LKZ-630 increased the equilibrium adsorption of protease on wool fibers by 12.7 times and increased the hydrolysis rate by 36.3 times. Wool carpet mercerizing equipment with brushing and scraping functions was developed. A protease-catalyzed system (LKZ-630 2 g/L and Savinase 16L 1 g/L) combined with brushing and scraping was used for mercerizing pure wool carpets at 50℃ for 40 min. Brushing and scraping cause the mechanical force on the carpet fiber to gradually increase from the tail to the tip during treatment. As a result, the fineness of the treated wool fibers gradually became finer from the tail to the tip. The fiber tip fineness after treatment even reached 1 μm, giving the treated carpet a layered feeling and a soft touch. In addition, the surface of the upper and middle fibers of the treated carpet was exceptionally smooth compared to the untreated carpet. As a result, the treated carpet had a better gloss, with CIE brightness and whiteness values increased by 6.99 and 50.12, respectively, and the yellowness value reduced by 14.84. The surface group structure of the treated carpet was similar to that of the untreated. However, the crystallinity was reduced due to the destruction of the disulfide bond cross-linking in the scale proteins.

Conclusion The protease-catalyzed system consisting of the substrate activator LKZ-630 and Savinase 16L was constructed to degrade wool high-sulfur hard keratin. LKZ-630 could efficiently open the disulfide bond in the wool fiber and significantly increase the adsorption rate of the enzyme on wool fiber and the hydrolysis efficiency of the enzyme on wool high-sulfur keratin. The higher the concentration of LKZ-630, the higher the adsorption of wool to the protease, and the higher the reactivity of the protease to the wool. The protease-catalyzed system was combined with brushing and scraping to mercerize the wool carpet. Compared with the untreated carpet, the degree of exfoliation of keratin tissue of the treated carpet fibers was gradually strengthened from the tail to the tip, and the fineness was also gradually thinned. The treated carpet was soft to the touch and had a sense of hierarchy and a silk-like luster, realizing the ecological chlorine-free mercerization of wool carpet. Further studies on the dyeing and finishing properties of carpets treated with the protease-catalyzed system are necessary.

Key words: protease, wool, carpet, protease catalytic system, mercerization, substrate activation

中图分类号: 

  • TS131.8

图1

地毯处理设备示意图"

图2

LKZ-630处理后羊毛纤维中巯基含量"

图3

不同底物条件下LKZ-630对蛋白酶Savinase 16L活力的影响"

图4

LKZ-630对羊毛纤维吸附蛋白酶的影响"

图5

LKZ-630对酶降解羊毛水解度的影响"

图6

处理前后地毯纤维形态及示意图"

图7

处理前后地毯实物照片"

图8

处理前后羊毛地毯表面反射率曲线"

表1

处理前后羊毛地毯表面颜色变化"

样品 L* a* b* c* h*/(°) ΔL* Δa* Δb* ΔE* W Y
原始样品 77.83 1.44 21.47 21.52 86.17 -61.20 44.21
处理后样品 84.82 -0.6 15.35 15.36 92.25 6.99 -2.04 -6.11 9.51 -11.08 29.37

图9

处理前后地毯中纤维的XRD图谱"

图10

处理前后地毯中纤维的红外图谱"

[1] 占镠祥, 李婉, 王高军, 等. 氯化丝光与防缩处理对羊毛纤维结构及其性能的影响[J]. 毛纺科技, 2019, 47(10): 31-35.
ZHAN Liuxiang, LI Wan, WANG Gaojun, et al. Effect of chlorination mercerization and shrinkage prevention on structure and properties of wool fibers[J]. Wool Textile Journal, 2019, 47(10): 31-35.
[2] 刘建勇, 吴胜争, 赵笑康. 生物酶协同催化体系及其对羊毛纤维的作用机制[J]. 纺织学报, 2018, 39(1): 71-78.
LIU Jianyong, WU Shengzheng, ZHAO Xiaokang. Biological enzyme synergistic catalytic system and its mechanism on wool fiber[J]. Journal of Textile Research, 2018, 39(1): 71-78.
[3] HASSAN M M, CARR C M. A review of the sustainable methods in imparting shrink resistance to wool fabrics[J]. Journal of Advanced Research, 2019 (18): 39-60.
[4] 杨慧伶. 等离子体处理对羊毛织物毡缩性和染色性的影响[D]. 上海: 东华大学, 2020: 10-25.
YANG Huiling. Effect of plasma treatment on the antifelting and dyeing properties of wool fabric[D]. Shanghai: Donghua University, 2020: 10-25.
[5] 江魁, 邵建中. 羊毛毛条的过硫酸氢钾-聚乙烯亚胺抗毡缩整理研究[J]. 染整技术, 2019, 41(2): 33-38.
JIANG Kui, SHAO Jianzhong. Anti-felting finishing study of potassium peroxymonosulfate-poIyethyleneimine from wooI tops[J]. Textile Dyeing and Finishing Journal, 2019, 41(2): 33-38.
[6] SHAHID M, MOHAMMAD F, CHEN G, et al. Enzymatic processing of natural fibres: white biotechnology for sustainable development[J]. Green Chemistry, 2016, 18(8): 2256-2281.
[7] RAZZAQ A, SHAMSI S, ALI A, et al. Microbial proteases applications[J]. Frontiers in bioengineering and biotechnology, 2019. DOI: 10.3389/fbioe.2019.00110.
[8] QIU Jingwen, WILKENS C, BARRETT K, et al. Microbial enzymes catalyzing keratin degradation: classification, structure, function[J]. Biotechnology advances, 2020. DOI: 10.1016/j.biotechadv.2020.107607.
[9] 梅静霞, 张楠, 王强, 等. 基于修饰蛋白酶的羊毛织物防毡缩整理[J]. 纺织学报, 2019, 40(6): 74-79.
MEI Jingxia, ZHANG Nan, WANG Qiang, et al. Wool anti-felting treatment based on modified protease[J]. Journal of Textile Research, 2019, 40(6): 74-79.
[10] 张腾飞. 基于蛋白酶K的羊毛剥鳞技术研究[D]. 上海: 东华大学, 2023: 21-36.
ZHANG Tengfei. Reaserch on wool scale-peeling technology based on proteinase K[D]. Shanghai: Donghua University, 2023: 21-36.
[11] 陈光, 袁久刚, 向宇, 等. 羊毛角蛋白中巯基含量的测定及其应用[J]. 材料导报, 2021, 35(14): 14176-14179.
CHEN Guang, YUAN Jiugang, XIANG Yu, et al. Determination of sulfhydryl content in wool keratin and its application[J]. Materials Reports, 2019, 35(14): 14176-14179.
[12] 王乐. 蛋白酶法羊毛连续快速防缩技术及机制研究[D]. 天津: 天津工业大学, 2020: 85-100.
WANG Le. Study on continuous and rapid shrinkage prevention of wool by protease method and its mecha-nism[D]. Tianjin: Tiangong University, 2020: 85-100.
[13] ZHANG Yiping, ZHANG Nan, WANG Qiang, et al. A facile and eco-friendly approach for preparation of microkeratin and nanokeratin by ultrasound-assisted enzymatic hydrolysis[J]. Ultrasonics Sonochemistry, 2020. DOI: 10.1016/j.ultsonch.2020.105201.
[14] 梁志结, 罗正智, 程海兵, 等. 多钒酸盐催化氧化咖啡酸及其对羊毛织物的原位染色性能[J]. 纺织学报, 2023, 44(10): 98-103.
doi: 10.13475/j.fzxb.20211002001
LIANG Zhijie, LUO Zhengzhi, CHENG Haibing, et al. Oxidation of caffeic acid and in-situ dyeing performance of wool fabrics catalyzed by polioxovanadate[J]. Journal of Textile Research, 2023, 44(10): 98-103.
doi: 10.13475/j.fzxb.20211002001
[15] ZHANG Pan, ZHANG Nan, WANG Qiang, et al. Disulfide bond reconstruction: a novel approach for grafting of thiolated chitosan onto wool[J]. Carbohydrate Polymers, 2019, 203: 369-377.
doi: S0144-8617(18)31149-4 pmid: 30318225
[16] 黄宏博, 韩宗保, 郭恒, 等. 热湿处理对免烫羊毛织物保形性能的影响[J]. 纺织学报, 2021, 42(12): 119-124.
doi: 10.13475/j.fzxb.20201004806
HUANG Hongbo, HAN Zongbao, GUO Heng, et al. Influence of thermal and moist treatments on shape retention performance of anti-creasing wool fab[J]. Journal of Textile Research, 2019, 42(12): 119-124.
[17] ZHANG Yiping, ZHANG Nan, WANG Q, et al. A facile and controllable approach for surface modification of wool by micro-dissolution[J]. Fibers and Polymers, 2020, 21(6): 1229-1237.
[18] 袁久刚, 季吉, 薛琪, 等. 羊毛角蛋白在巯基乙酸胆碱中的溶解再生[J]. 纺织学报, 2021, 42(1): 35-39.
YUAN Jiugang, JI Ji, XUE Qi, et al. Dissolution and regeneration of wool keratin in choline thioglycolate[J]. Journal of Textile Research, 2021, 42(1): 35-39.
[1] 吴涛, 李婕, 鲍劲松, 王新厚, 崔鹏. 羊毛混纺面料生产流程的碳图谱建模与应用[J]. 纺织学报, 2024, 45(09): 97-105.
[2] 董亚琳, 王黎明, 覃小红. 废弃羊毛角蛋白再生工艺及其高值化应用的研究进展[J]. 纺织学报, 2024, 45(07): 213-222.
[3] 向宇, 周爱晖, 王思翔, 季巧, 文馨可, 袁久刚. 基于拉曼光谱的羊毛二硫键及构象含量分析[J]. 纺织学报, 2024, 45(02): 45-51.
[4] 梁志结, 罗正智, 程海兵, 贾维妮, 毛庆辉. 多钒酸盐催化氧化咖啡酸及其对羊毛织物的原位染色性能[J]. 纺织学报, 2023, 44(10): 98-103.
[5] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[6] 蒋阳, 崔彪, 山传雷, 刘殷, 张艳红, 许长海. 天然染料染色羊毛的色域拓展及颜色预测模型[J]. 纺织学报, 2023, 44(02): 199-206.
[7] 赵馨, 王彩霞, 周小皮, 丁雪梅. 基于岭回归方法的羊毛衫洗后特征感性评价[J]. 纺织学报, 2022, 43(07): 155-161.
[8] 孙春红, 丁广太, 方坤. 基于稀疏字典学习的羊绒与羊毛分类[J]. 纺织学报, 2022, 43(04): 28-32.
[9] 黄宏博, 韩宗保, 郭恒, 姚金波, 姜会钰, 夏治刚, 王运利. 热湿处理对免烫羊毛织物保形性能的影响[J]. 纺织学报, 2021, 42(12): 119-124.
[10] 周慧玲, 朱俐莎, 吴雄英, 丁雪梅. 电雾化处理对羊毛织物抗起毛起球性能的影响[J]. 纺织学报, 2021, 42(10): 120-125.
[11] 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13.
[12] 张子煜, 徐洋, 盛晓伟, 解国升. 基于统计能量分析的簇绒地毯织机高频噪声抑制[J]. 纺织学报, 2021, 42(03): 169-174.
[13] 袁久刚, 季吉, 薛琪, 姜哲, 范雪荣, 高卫东. 羊毛角蛋白在巯基乙酸胆碱中的溶解再生[J]. 纺织学报, 2021, 42(01): 35-39.
[14] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[15] 陈绍用, 徐洋, 盛晓伟, 张子煜. 基于滤波最小均方算法的簇绒地毯装备噪声主动控制[J]. 纺织学报, 2020, 41(07): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!