纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 137-145.doi: 10.13475/j.fzxb.20230603801

• 染整工程 • 上一篇    下一篇

基于MXene的导电织物构筑及其多功能应用

卢道坤1, 王仕飞2, 董倩1, 史纳蔓1, 李思琦1, 干露露1, 周爽1, 沙莎1, 张如全1, 罗磊1,2()   

  1. 1.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2.欣龙控股(集团)股份有限公司, 海南 海口 570125
  • 收稿日期:2023-06-19 修回日期:2024-03-30 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 罗磊(1990—),男,副教授,博士。主要研究方向为功能纺织材料。E-mail: leiluo@wtu.edu.cn
  • 作者简介:卢道坤(1995—),男,硕士。主要研究方向为功能纤维材料。
  • 基金资助:
    湖北省重点研发计划项目(2020DGC003);湖北省自然科学基金项目(2021CFB478);武汉市科技局国家重点实验室专项资助项目(2022013988065214);武汉纺织大学大学生创新训练项目(S202310495013)

Construction of MXene-based conductive fabrics and their multifunctional applications

LU Daokun1, WANG Shifei2, DONG Qian1, SHI Naman1, LI Siqi1, GAN Lulu1, ZHOU Shuang1, SHA Sha1, ZHANG Ruquan1, LUO Lei1,2()   

  1. 1. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Xinlong Holding (Group) Co., Ltd., Haikou, Hainan 570125, China
  • Received:2023-06-19 Revised:2024-03-30 Published:2024-09-15 Online:2024-09-15

摘要:

为拓展二维碳化钛材料在智能纺织品中的应用,以纤维素非织造布为基材,将Ti3C2Tx和碳纳米管(CNTs)喷涂在纤维素非织造布上,制备出一种集传感、储能、热能转换于一体的多功能复合导电织物。借助扫描电子显微镜、X射线衍射仪及傅里叶变换红外光谱仪对Ti3C2Tx及其改性织物的表面形貌及结构进行表征。结果表明:Ti3C2Tx/CNTs/非织造布具有优异的电热和光热转化性能,在15 V电压下织物快速升温至115 ℃,且在室温(32 ℃)条件下,织物经阳光照射后表面快速升温至65 ℃;所制备的柔性半固态超级电容器,在电流密度为0.2 A/cm2下,最大面积比电容达到125 mF/cm2,即使在10 000次充放电循环后仍保持74%的电容;作为应变传感器时,表现出明显的负电阻变化和高灵敏度,能准确检测出手指弯曲、肘部弯曲、膝盖弯曲等人体动作。

关键词: 导电织物, Ti3C2Tx, 碳纳米管, 光热性能, 电热性能, 电容器, 传感器, 纤维素非织造布

Abstract:

Objective The two-dimensional material MXene can be easily integrated with textiles because of its excellent dispersion, good mechanical properties, and high conductivity, and has shown potential applications in many areas. In order to expand the application of two-dimensional titanium carbide materials into smart textiles, Ti3C2Tx and carbon nanotubes (CNTs) were sprayed on pure nonwovens as the substrate to prepare a multifunctional electronic textile which integrates sensing, energy storage, and thermal energy conversion.

Method Ti3C2Tx MXene sheets were synthesized through the typical chemical etching method by selectively etching Al layer from Ti3AlC2 phase. Ti3C2Tx (2 mg/mL) and CNTs dispersion (2 mg/mL) were then ultrasonically mixed (at a volume ratio of 1∶1) and repeatedly sprayed on nonwoven fabric substrate until the surface resistance of the fabric was lower than 150 Ω. The Ti3C2Tx/CNTs/nonwoven (MCF) composite was finally prepared and characterized by scanning electron microscope and X-ray diffraction. In addition, the photothermal and electrothermal conversion performance, electrochemical properties and sensing performance were also explored.

Results The thread-like CNTs on the fabric surface were wrapped around the entangled Ti3C2Tx flake, connecting Ti3C2Tx from different regions and forming a stable conductive network. The Ti3C2Tx was successfully synthesized and uniformly attached on the surface of nonwoven substrate. When MCF was used for photothermal conversion, it was quickly heated up to 65 ℃ in 60 min and maintained stable. In terms of the electrical heating performance, the thermal response time of MCF was shorter than 2 s, and the aperture on the infrared thermal image was uniformly distributed. The reason is that the addition of CNTs further improved the overall conductivity of the material, and exploited the large volume and contact area of the CNTs to bond with more Ti3C2Tx, and created more conductive pathways on the surface of the fabric. When the MCF electrode was used in a flexible semi-solid supercapacitor, the specific capacitance remained at 70 mF/cm2 even at a high current density of 2 A/cm2. After 10 000 cycles, the MCF still maintained a capacitance retention of 74%, indicating that the MCF electrode had a good cycling durability. In addition, the MCF was also used as sensors and fixed on the neck, wrist, fingertips, knee, and elbow of the human body to monitor human motions. With each bending of the human body, the resistances of MCF underwent regular changes, which were captured and recorded clearly and stably.

Conclusion MCF was successfully prepared by modified mixed solution of CNTs/Ti3C2Tx on the nonwoven substrate using a simple spraying method. Owing to the synergistic effect of CNTs and MXene films, MCF was rapidly heated up to 65 ℃ at room temperature of 32 ℃ after being exposed to sunlight and 115 ℃ under a voltage of 15 V, demonstrating good photothermal conversion and joule thermal performance. When used as a flexible semi-solid supercapacitor electrode, MCF exhibited a high specific capacitance of 125 mF/cm2. Additionally, MCF could be applied as a flexible strain sensor to detect human motions, exhibiting significant negative resistance changes and high sensitivity. In summary, MCF presents great potential applications in wearable electronic products and multifunctional garments.

Key words: conductive fabric, Ti3C2Tx, carbon nanotube, photothermal performance, electric heating performance, capacitor, sensor, cellulose nonwoven fabric

中图分类号: 

  • TS195.2

图1

MCF、CF、MF的SEM照片"

图2

MCF的EDS测试图"

图3

不同样品的XRD图"

图4

MCF、CF、MF的红外光谱图"

图5

MCF、CF、MF的红外热像图"

图6

MCF、CF、MF的红外热像图及温度变化曲线"

图7

MCF、CF、MF的充放电曲线及CV曲线"

图8

半固态电容器的电化学性能"

图9

人体不同部位运动信号检测"

[1] 王成成, 龚筱丹, 王振, 等. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(5):38-42.
WANG Chengcheng, GONG Xiaodan, WANG Zhen, et al. Preparation of highly sensitive temperature sensitive color changing microcapsules and their application in intelligent textiles[J]. Journal of Textile Research, 2022, 43(5): 38-42.
[2] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electrom agnetic interference shielding, humidity monitoring and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019. DOI:101002/adfm.201905197.
[3] LAN C, GUO M, LI C, et al. Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding[J]. ACS Applied Materials and Interfaces, 2020, 12(6): 7477-7485.
[4] ZHANG J Z, UZUN S, SEYDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science, 2020, 6(2): 254-265.
doi: 10.1021/acscentsci.9b01217 pmid: 32123744
[5] 荣凯, 樊威, 王琪, 等. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(9):10-16.
RONG Kai, FAN Wei, WANG Qi, et al. Progress inthe application of two-dimensional transition metal carbon/nitrogen compound composite fibers in the field of intelligent wearability[J]. Journal of Textile Research, 2021, 42 (9): 10-16.
[6] ZHOU B, ZHANG Z, LI Y L, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4895-4905.
[7] ZHANG C J, KREMER M P, SERAL A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.202008795.
[8] LEVITT A, ZHANG J, DIN G, et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices[J]. Advanced Functional Materials, 2020, 30(47): 1-22.
[9] ANASORI B, LUHATSKAYA M R, GOTSI Y. 2D metal carbides and nitrides (MXene) for energy storage[J]. Nature Reviews Materials, 2017. DOI: 10.1038/natrevmats.2016.98.
[10] ANDREA R, MARIA C, RIGHI A V S, et al. Perspectives of 2D MXene tribology[J]. Advanced Materials, 2022. DOI: 10.1002/adma.202207757.
[11] BABAK A, MICHAEL N, GUEST E, et al. Two-dimensional MXene[J]. MRS Bulletin, 2023, 48(3):238-244.
[12] LI M, LI X, QIN G, et al. Halogenated MXene with electrochemically active terminals for high performance zinc ion batteries[J]. ACS Nano, 2021, 15(7):1077-1085.
[13] ZHANG C, MCKEON C, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitor[J]. Nature Communicators, 2019, 10(1): 1-9.
[14] LI J, ZHANG W, YANG L Y, et al. Conductive fabrics based on carbon nanotube/Ti3C2Tx MXene/polyaniline/liquid metal quaternary composites with improved performance of EMI shielding and joule heating[J]. Composites Communications, 2023. DOI: 10.1016/j.coco.2022.101476.
[15] GENG L, ZHU P, WEI Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding[J]. Cellulose, 2019, 26(4): 2833-2847.
[16] ZHENG X H, NIE W Q, Hu Q L, et al. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection-science direct[J]. Materials & Design, 2021. DOI:10.1016/jmatdes.2020.109442.
[17] CHEN Z, ASIF M, WANG R, et al. Recent trends in synthesis and applications of porous MXene assemblies: a topical review[J]. The Chemical Record, 2022. DOI: 10.1016/jcej.2020.124057.
[18] YAO M Y, Chen Y Y, WANG Z, et al. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors[J]. Chemical Engineering Journal, 2020. DOI:10.1016/jcej.2020.124057.
[19] LUO E L, LIU Q W, ZHANG B Z, et al. Binder-free flexible Ti3C2Tx MXene/reduced graphene oxide/carbon nanotubes film as electrode for asymmetric supercapacitor[J]. Chemical Engineering Journal, 2023. DOI:10.1016/jcej.2023.145553.
[20] ZHOU Z Y, SEIF A, POURHASHEM S, et al. Experimental and theoretical studies toward superior anti-corrosive nanocomposite coatings of aminosilane wrapped layer-by-layer graphene oxide @MXene /waterborne epoxy[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 51275-51290.
[21] ZHAN Z, SONG Q, ZHOU Z, et al. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2019, 7(32): 9820-9829.
[22] WANG F X, GUO J X, Li S H, et al. Self-assembly of MXene-decorated stearic acid/ionic liquid phase change material emulsion for effective photo-thermal conversion and storage[J]. Ceramics International, 2023, 49(1): 480-488.
[23] LI C, WANG L, ZHANG X, et al. Cation-deficient T-Nb2O5/graphene hybrids synthesized via chemical oxidative etching of MXene for advanced lithium-ion capacitors[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.143507.
[24] WANG L, ZHANG X, XU Y A, et al. Tetrabutylammonium-intercalated 1T-MoS2nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202104286.
[25] HEMMATI, SAHARLI, WANG G, et al. 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon micro tubes toward high-rate Li-ion capacitors[J]. Nano Energy, 2019, 56: 118-126.
[26] YI S, WANG L, ZHANG X, et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/RGO hybrid nan flakes for advanced lithium-ion capacitors[J]. Science Bulletin, 2021, 66(9): 914-924.
[27] LIME, JO C, KIM, et al. Facile synthesis of Nb2O5@Carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid super-capacitors[J]. Acs Nano, 2021, 9(7): 7497-7505.
[28] 佘明华, 徐瑞东, 韦继超, 等. 纺织基柔性触觉传感器及可穿戴应用进展[J]. 丝绸, 2023, 60(3):60-72.
SHE Minghua, XU Ruidong, WEI Jichao, et al. Progress in textile based flexible tactile sensors and wearable applications[J]. Journal of Silk, 2023, 60(3):60-72.
[29] TANG Y, XU Y, YANG J, et al. Stretchable and wearable conductometric VOC sensors based on microstructured MXene/polyurethane core-sheath fibers[J]. Sensors and Actuators B: Chemical, 2021. DOI: 10.1016/jsnb.2021.130500.
[30] JIANG J, CHEN X, NIU Y, et al. Advances in flexible sensors with MXene materials[J]. New Carbon Materials, 2022, 37(2): 303-320.
[1] 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17.
[2] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[3] 施楚, 李俊, 王云仪. 基于温度监测的糖尿病足预防性智能鞋袜研究进展[J]. 纺织学报, 2024, 45(07): 240-247.
[4] 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226.
[5] 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146.
[6] 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238.
[7] 陈莹, 沈娜弟, 张露. 全纤维电容式传感器的结构设计及其性能[J]. 纺织学报, 2024, 45(05): 43-50.
[8] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[9] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159.
[10] 卿星, 肖晴, 陈斌, 李沐芳, 王栋. 纤维晶体管器件研究进展[J]. 纺织学报, 2024, 45(04): 33-40.
[11] 冯亚, 孙颖, 崔艳超, 刘梁森, 张宏亮, 胡俊军, 居傲, 陈利. 含镍铬合金丝纬编电加热层复合材料的层间剪切性能[J]. 纺织学报, 2024, 45(04): 89-95.
[12] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[13] 居傲, 向卫宏, 崔艳超, 孙颖, 陈利. 基于定制纤维铺放工艺的电加热织物制备及其半球成型性能[J]. 纺织学报, 2024, 45(02): 67-76.
[14] 王博, 刘美亚, 陈明娜, 宋孜灿, 夏明, 李沐芳, 王栋. 聚吡咯/氨纶长丝的应变传感性能与应用[J]. 纺织学报, 2024, 45(02): 119-125.
[15] 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!