纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 235-243.doi: 10.13475/j.fzxb.20230800502

• 综合述评 • 上一篇    下一篇

相变材料微胶囊的研究进展

刘文静1, 张欣睿1, 赵晓曼1,2,3(), 洪剑寒1,2,3, 王鸿博4, 韩潇1,2,3   

  1. 1.绍兴文理学院 纺织科学与工程学院, 浙江 绍兴 312000
    2.浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
    3.绍兴文理学院 纤维基复合材料国家工程研究中心绍兴分中心, 浙江 绍兴 312000
    4.江南大学 江苏省功能纺织品工程技术研究中心, 江苏 无锡 214122
  • 收稿日期:2023-08-02 修回日期:2024-03-23 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 赵晓曼(1988—),女,讲师,博士。主要研究方向为功能纺织材料。E-mail: wxzhxm09@163.com
  • 作者简介:刘文静(1998—),女,硕士生。主要研究方向为功能纺织材料。
  • 基金资助:
    国家自然科学基金项目(52300167);中国纺织工业联合会科技指导性项目(2021005);浙江省公益技术研究计划项目(LGJ21E030001);绍兴市基础公益类计划项目(重点)(2022A11004)

Research progress in microcapsules of phase change materials

LIU Wenjing1, ZHANG Xinrui1, ZHAO Xiaoman1,2,3(), HONG Jianhan1,2,3, WANG Hongbo4, HAN Xiao1,2,3   

  1. 1. School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
    3. Shaoxing Sub-Center of National Engineering Research Center for Fiber-Based Composites, Shaoxing University, Shaoxing, Zhejiang 312000, China
    4. Jiangsu Engineering Technology Research Center of Function Textiles, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-08-02 Revised:2024-03-23 Published:2024-09-15 Online:2024-09-15

摘要:

为进一步提高能源利用率,满足当今社会对可持续能源的迫切需求,首先,列举了相变材料微胶囊的芯材和壁材的分类及其选择原则;其次,分析总结了相变材料微胶囊不同制备技术的国内外最新研究进展,重点对比归纳了物理法、化学法以及物理化学法等制备技术的原理、特点及其适用范围;然后,综述了相变材料微胶囊在纺织、医疗、建筑、能源等领域的应用进展并分析总结国内外最新相关研究;最后,针对相变材料微胶囊在生产制备和实际应用中的关键问题,提出其潜在解决方案和优先发展方向,以推进相变材料微胶囊不断向绿色化、多功能化方向深入发展。

关键词: 相变材料, 微胶囊, 芯材, 壁材, 绿色化, 多功能化

Abstract:

Significance Influenced by global energy crisis in the 1970s, improvement of energy efficiency and identification of alternative sustainable energy have become an urgent need of the moprden society. Along with this, the research and application of microcapsules of phase change materials (PCMs) have attracted much attention. Microcapsules of PCMs are a type of core-shell structured micro/nano smart materials. The core materials are the phase change materials and the shell materials are organic or inorganic substances. Encapsulation technology for phase change materials can facilitate the maintenance of shape in solid-liquid PCMs and can overcome phase segregation and low thermal conductivity. It effectively overcomes defects such as volume changes, leakage, and supercooling that occur during solid-liquid phase transitions of phase change materials. As a result, it significantly reduces the "phase separation" phenomenon and improves the stability of phase change materials. Owing to their unique advantages in energy storage and temperature regulation, microcapsules of PCMs have been widely applied in various fields such as textiles, medical care, architecture and solar energy. Therefore, the exploration of their preparation techniques and applications presents important scientific significance and research value.

Progress The clarification of the commonly used core and shell materials, the preparation technologies of microcapsules of PCMs and their applications were comprehensively reviewed. The microcapsules of PCMs consist of a core material, which is the phase change material itself, encapsulated within the microcapsule, a shell material used to protect the core material from leakage. The shell material should possess certain mechanical strength, compactness, and should not react chemically with the core materials. The preparation techniques for PCM microcapsules mainly include physical methods, chemical methods, and physicochemical methods. Physical methods are those in which the encapsulation of PCMs uses only physical processes such as drying and bonding, where the materials forming the shell do not undergo any chemical reactions with the core materials. The obtained microcapsules of PCMs exhibit good stability and controllability, and are suitable for micro-scale systems. For the chemical methods, the shell of microcapsules is synthesized through polymerization or condensation reactions between monomers, oligomers, or pre-polymers at the oil-water interface. Microcapsules of PCMs prepared by chemical methods have excellent performance and small particle sizes and simple operation. Physicochemical methods are a technique that combines physical methods such as heating and cooling with chemical methods such as hydrolysis, crosslinking and polycondensation. Microcapsules of PCMs with different characteristics and functions such as enhanced stability, small particle size and improved controllability can be prepared by adopting different preparation methods. Therefore, PCMs are widely used in textiles, medical care, architecture, solar energy, and other fields.

Conclusion and Prospect PCM Microcapsules have broad applications. There are still some challenges and problems in practical production. Firstly, the high cost of phase change materials limits their widespread applications due to the expensive production process. Secondly, the material loss is quite high in the preparation of PCM microcapsules. In order to the above problems, the preparation process of microcapsules of PCMs can be improved or replaced by a more economical and efficient production mode. Meanwhile, how to improve the coating rate of microcapsules and increase the response speed are also the current research and development directions of PCM microcapsules. Finally, it is conducive to the promotion of development of the microcapsules of PCMs to green and multi-functional directions by combining the properties of heat storage and temperature regulation with the environmentally friendly multi-functional materials. It can also contribute to the reduction of energy consumption and the enhancement of energy utilization efficiency, which would benefit human beings and the environment.

Key words: phase change material, microcapsule, core material, shell material, green direction, multi-functional

中图分类号: 

  • TB34

表1

相变材料微胶囊常用芯材的分类及优缺点"

芯材种类 优点 缺点 材料 相变温度/℃ 相变潜热ΔH/(J·g-1) 参考文献
有机 温度适应性好、相变潜热大、
无过冷现象、无腐蚀性、
无毒、无相分离现象、高稳定性
低导热性、易流动性 正十四醇 33.62 207.33 [15]
正十八烷 32.4 253.7 [9]
硬脂酸 60.4 238.7 [16]
月桂酸 39.8 192.7 [15]
石蜡(Pn) 61.17 199.77 [17]
无机 储能密度高、导热系数大 存在高过冷与相分离现象,有一定的腐蚀性 Sn 232 60.5 [18]
CaCl2·6H2O 28.96 151.6 [19]
Na2SO4·10H2O 32.1 249 [20]
共晶 储能密度大、传热迅速、
稳定性好
材料结构复杂、界面处理较难、相变潜热小 十四胺-十六胺 35~44.3 [21]
正癸酸-十八醇 27.95 154.2 [22]

表2

相变材料微胶囊常用的材料"

壁材种类 壁材 芯材 PCMs微胶囊合成方法 参考文献
有机 蜜胺树脂 正十八烷 原位聚合法 [9]
聚甲基丙烯酸甲酯(PMMA) 十八烷 乳液聚合法 [25]
聚脲 十二酸十二醇 界面聚合法 [26-27]
聚氨酯 正十二烷 乳液聚合法 [28]
无机 氧化铜 石蜡 原位聚合法 [29]
钛酸锶 十四酸 溶胶-凝胶法 [11]
SiO2 硬脂醇 溶胶-凝胶法 [24]
复合 碳酸钙/纳米铁 硬脂酸 原位聚合法 [16]
聚二乙烯基苯/TiO2 石蜡 乳液聚合法 [30]

图1

物理法制备相变材料微胶囊的流程图"

图2

化学法制备相变材料微胶囊的流程图"

图3

物理化学法制备相变材料微胶囊流程图"

[1] 陈云博, 朱翔宇, 李祥, 等. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(1): 167-174.
CHEN Yunbo, ZHU Xiangyu, LI Xiang, et al. Recent advance in preparation of thermo-regulating textiles based on phase change materials[J]. Journal of Textile Research, 2021, 42(1): 167-174.
[2] ERREBAI F B, CHIKH S, DERRADJI L, et al. Optimum mass percentage of microencapsulated PCM mixed with gypsum for improved latent heat storage[J]. Journal of Energy Storage, 2021. DOI: 10.1016/j.est.2020.101910.
[3] 陈红兵, 赵瑞, 王聪聪, 等. 基于太阳能集热蓄热的相变微胶囊的制备及微观形态表征[J]. 功能材料, 2020, 51(12): 12192-12197.
doi: 10.3969/j.issn.1001-9731.2020.12.029
CHEN Hongbing, ZHAO Rui, WANG Congcong, et al. Preparation and micromorphology characterization of phase change microcapsules based on solar thermal storage[J]. Journal of Functional Materials, 2020, 51(12): 12192-12197.
doi: 10.3969/j.issn.1001-9731.2020.12.029
[4] PAROUTOGLOU E, FOJAN P, GUREVICH L, et al. Thermal analysis of organic and nanoencapsulated electrospun phase change materials[J]. Energies, 2021, 14(4): 995-1009.
[5] ZHU S, NGUYEN M T, YONEZAWA T. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage[J]. Nanoscale Advances, 2021, 3(16): 4626-4645.
doi: 10.1039/d0na01008a pmid: 36134315
[6] 刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430.
doi: 10.19799/j.cnki.2095-4239.2022.0521
LIU Wei, LI Zhenming, LIU Mingyang, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430.
doi: 10.19799/j.cnki.2095-4239.2022.0521
[7] CHERIF C, TRAN N H A, KIRSTEN M, et al. Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity[J]. Express Polymer Letters, 2018, 12: 203-214.
[8] 牛少帅, 程家骥, 康墨云, 等. 不同乳化转速对聚脲微胶囊热性能的影响[J]. 青岛科技大学学报(自然科学版), 2023, 44(3): 38-44.
NIU Shaoshuai, CHENG Jiaji, KANG Moyun, et al. Effect of different emulsifying speed on thermal properties of polyurea microcapsules[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2023, 44(3): 38-44.
[9] 王建平, 张雅婷, 杨沉, 等. 正二十二酸对相变材料微胶囊性能的影响[J]. 天津工业大学学报, 2022, 41(4): 15-21.
WANG Jianping, ZHANG Yating, YANG Chen, et al. Effect of n-docosanoic acid on the properties of microcapsules of phase change materials[J]. Journal of Tiangong University, 2022, 41(4): 15-21.
[10] SUBRAMANIAN A, APPUKUTTAN S. Sol-gel synthesis and characterization of microencapsulated strontium titanate-myristic acid phase change material for thermal energy storage[J]. Journal of Sol-Gel Science and Technology, 2019, 94(3): 573-581.
[11] GHOGHAEI M S, MAHMOUDIAN A, MOHAMMADI O, et al. A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems[J]. Journal of Thermal Analysis and Calorimetry, 2021, 145(2): 245-268.
[12] TYURIN I N, GETMANTSEVA V V, ANDREEVA E G. Analysis of innovative technologies of thermoregulating textile materials[J]. Fibre Chemistry, 2018, 50(1): 1-9.
[13] 高立营, 郅慧, 张远军, 等. 相变材料微胶囊的制备与表征分析方法综述[J]. 南京工业大学学报(自然科学版), 2022, 44(6): 624-632.
GAO Liying, ZHI Hui, ZHANG Yuanjun, et al. Review of the preparation and characterization of microencapsulated phase change materials[J]. Journal of Nanjing Tech University (Natural Science Edition), 2022, 44(6): 624-632.
[14] 孙朝. 相变材料微胶囊的多层级结构设计、制备及其多样化应用[D]. 北京: 北京化工大学, 2022: 4-26.
SUN Zhao. Hierarchical structure design, preparation and diversified application of phase change microcapsules[D]. Beijing: Beijing University of Chemical Technology, 2022: 4-26.
[15] 王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2): 70-75.
WANG Xin, FANG Jianhua, LIU Ping, et al. Research progress of phase change material[J]. Journal of Functional Materials, 2019, 50(2): 70-75.
[16] DU X, WANG S, DU Z, et al. Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly (methylmethacrylate) shells for thermal energy storage[J]. Journal of Materials Chemistry A, 2018, 6(36): 17519-17529.
[17] ZHANG B, LI S, FEI X, et al. Enhanced mechanical properties and thermal conductivity of paraffin microcapsules shelled by hydrophobic-silicon carbide modified melamine-formaldehyde resin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125219-125227.
[18] 卢家辉. 金属锡基相变储热微胶囊的制备及储热特性研究[D]. 徐州: 中国矿业大学, 2022: 4-5.
LU Jiahui. Study on preparation and thermal energy storage properties of metal Tin-based phase change microcapsules[D]. Xuzhou: China University of Mining and Technology, 2022: 4-5.
[19] 张雄飞. 无机相变材料在建筑蓄热地板应用研究[D]. 北京: 北京市市政工程研究院, 2022: 5-28.
ZHANG Xiongfei. Application of inorganic phase change materials in building heat storage floor[D]. Beijing: Beijing Municipal Research Institute, 2022: 5-28.
[20] 李梦欣, 陈鹏, 吕钟灵, 等. 复合无机盐相变蓄冷材料的制备与改性研究[J]. 制冷学报, 2021, 42(4): 106-115.
LI Mengxin, CHEN Peng, LV Zhongling, et al. Preparation and modification of composite inorganic salt phase change materials for cold storage[J]. Journal of Refrigeration, 2021, 42(4): 106-115.
[21] 张万鑫, 孙志高. TDA-HDA/膨胀石墨复合相变材料的制备及性能研究[J]. 功能材料, 2023, 54(3): 3106-3112.
doi: 10.3969/j.issn.1001-9731.2023.03.015
ZHANG Wanxin, SUN Zhigao. Preparation and properties of TDA-HDA/expanded graphite composite phase change materials[J] Journal of Functional Materials, 2023, 54(3): 3106-3112.
doi: 10.3969/j.issn.1001-9731.2023.03.015
[22] 蒋达华, 杨昊天, 刘景滔, 等. 正癸酸/十八醇二元相变材料的热性能研究[J]. 中国材料进展, 2023, 42(2): 168-173.
JIANG Dahua, YANG Haotian, LIU Jingtao, et al. Thermal properties of capric acid/octadecanolbinary phase change materials[J]. Materials China, 2023, 42(2): 168-173.
[23] 张琦, 刘重阳, 宋俊, 等. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(4): 1110-1130.
doi: 10.19799/j.cnki.2095-4239.2022.0696
ZHANG Qi, LIU Chongyang, SONG Jun, et al. Progress in synthesis and application of microcapsule phase-change materials[J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130.
doi: 10.19799/j.cnki.2095-4239.2022.0696
[24] ZHU C, LIN Y, FANG G. Preparation and thermal properties of microencapsulated stearyl alcohol with silicon dioxide shell as thermal energy storage mate-rials[J]. Applied Thermal Engineering, 2020, 169: 114943-114951.
[25] 申晋琛, 林明桂, 马中义, 等. 十八烷@聚甲基丙烯酸甲酯微胶囊相变材料的制备及表征[J]. 燃料化学学报, 2022, 50(11): 1511-1516.
SHEN Jinchen, LIN Minggui, MA Zhongyi, et al. Preparation and characterization of oct adecane@PMMA microcapsules phase change materials[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1511-1516.
[26] CAI C, OUYANG X, ZHOU L, et al. Co-solvent free interfacial polycondensation and properties of polyurea PCM microcapsules with dodecanol dodecanoate as core material[J]. Solar Energy, 2020, 199: 721-730.
[27] 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576.
doi: 10.16085/j.issn.1000-6613.2020-2165
GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5554-5576.
doi: 10.16085/j.issn.1000-6613.2020-2165
[28] DE CASTRO P F, MINKO S, VINOKUROV V, et al. Long-term autonomic thermoregulating fabrics based on microencapsulated phase change materials[J]. ACS Applied Energy Materials, 2021, 4(11): 12789-12797.
doi: 10.1021/acsaem.1c02170 pmid: 35128339
[29] AGUILAR T, PEñA-CORDERO M D, CARRILLO-BERDUGO I, et al. Synthesis and characterization of metal oxide-based microcapsules including phase change materials for energy storage applications[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(9): 3189-3200.
[30] SUN W, WANG X, ZHANG X, et al. Design and synthesis of microencapsulated phase-change materials with a poly(divinylbenzene)/dioxide titanium hybrid shell for energy storage and formaldehyde photodegradation[J]. The Journal of Physical Chemistry C, 2020, 124(38): 20806-20815.
[31] 沙飞翔, 程国君, 唐忠锋, 等. 相变材料微胶囊化封装技术的研究进展[J]. 化学世界, 2023, 64(3): 141-148.
SHA Feixiang, CHENG Guojun, TANG Zhongfeng, et al. Research progressin microencapsulation technology of phase change materials[J]. Chemical World, 2023, 64(3): 141-148.
[32] METHAAPANON R, KORNBONGKOTMAS S, ATABOONWONGSE C, et al. Microencapsulation of n-octadecane and methyl palmitate phase change materials in silica by spray drying process[J]. Powder Technology, 2020, 361: 910-916.
[33] LI S, DONG X, LIN X, et al. Flexible phase change materials obtained from a simple solvent-evaporation method for battery thermal management[J]. Journal of Energy Storage, 2021, 44: 103447-103454.
[34] CHANG Z, WANG K, WU X, et al. Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage[J]. Journal of Energy Storage, 2022, 46: 103840-103851.
[35] NIKPOURIAN H, BAHRAMIAN A R, ABDOLLAHI M. On the thermal performance of a novel PCM nanocapsule: the effect of core/shell[J]. Renewable Energy, 2020, 151: 322-331.
[36] ZHAO X, GENG Q, ZHANG Z, et al. Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs[J]. Energy, 2023, 263: 125715-125726.
[37] 郭钟楷. pH敏感相变材料微胶囊自组装合成及性能表征[D]. 北京: 北京化工大学, 2018: 4-5.
GUO Zhongkai. Preparation and characterization of PH sensitive phase change microcapsules[D]. Beijing: Beijing University of Chemical Technology, 2018: 4-5.
[38] 陈新祥. 聚氨酯—植物蜡复合相变材料的制备及其在纺织品中的应用研究[D]. 杭州: 浙江理工大学, 2020: 4-21.
CHEN Xinxiang. Preparation of polyurethane-plant wax composite phase change materials and its application on textiles[D]. Hangzhou: Zhejiang Sci-Tech University, 2020: 4-21.
[39] 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(4): 194-202.
ZHU Xiaorong, HE Jiazhen, WANG Min. Application research progress in phase change materials for thermal protective clothing[J]. Journal of Textile Research, 2022, 43(4): 194-202.
[40] 张慧, 刘献飞, 燕红雁, 等. 相变材料对热防护服热蓄积性能的影响[J]. 消防科学与技术, 2023, 42(3): 374-378.
ZHANG Hui, LIU Xianfei, YAN Hongyan, et al. Influence of phase change materials on of the stored energy performance of thermal protective fabric system[J]. Fire Science and Technology, 2023, 42(3): 374-378.
[41] GENG X, LI W, WANG Y, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018, 217: 281-294.
[42] LI Y, YANG A, LI Y, et al. TC@MF phase change microcapsules with reversibly thermochromic property for temperature response and thermoregulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677: 132333-132345.
[43] MA X, WANG L, LI L, et al. The novel thermochromic and energy-storage microcapsules with significant extension of color change range to different tones[J]. Journal of Macromolecular Science, Part A, 2019, 56(6): 588-596.
[44] SU Y, ZHAO X, HAN Y. Phase change microcapsule composite material with intelligent thermoregulation function for infrared camouflage[J]. Polymers, 2023, 15(14): 3055-3071.
[45] 王春红, 李明, 龙碧旋, 等. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(5): 16-22.
WANG Chunhong, LI Ming, LONG Bixuan, et al. Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressino[J]. Journal of Textile Research, 2021, 42(5): 16-22.
[46] HUO X, LI W, WANG Y, et al. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation[J]. Carbohydrate Polymers, 2018, 200: 602-610.
doi: S0144-8617(18)30891-9 pmid: 30177205
[47] 宗志芳, 徐维成, 陈德鹏, 等. 基于光谱学分析癸酸-棕榈酸/SiO2@TiO2光催化相变微胶囊的制备机理[J]. 光谱学与光谱分析, 2023, 43(4): 1306-1313.
ZONG Zhifang, XU Weicheng, CHEN Depeng, et al. Preparation mechanism of decylic acid-palmitic acid/ SiO2@TiO2 photocatalytic phase change microcapsules based on multiple spectrum analysis[J]. Spectroscopy and Spectral Analysis, 2023, 43(4): 1306-1313.
[48] 周煜凌, 朱志雯, 顾浦中, 等. 有机复合相变材料在医药领域的研究进展[J]. 安徽化工, 2021, 47(6): 14-18.
ZHOU Yuling, ZHU Zhiwen, GU Puzhong, et al. Research progress of organic composite phase change materials in the field of medicine[J]. Anhui Chemical Industry, 2021, 47(6): 14-18.
[49] YANG T. The application of nanocapsule phase change material in the construction of civil engineering[J]. Arabian Journal of Geosciences, 2021, 14: 968-976.
[50] DUBEY A K, SUN J, CHOUDHARY T, et al. Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: an approach towards net zero[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113421-113447.
[51] 张佳琦, 齐典伟, 徐凤, 等. 太阳能供暖用新型流体制备及导热性能测试[J]. 科学技术与工程, 2023, 23(6): 2573-2578.
ZHANG Jiaqi, QI Dianwei, XU Feng, et al. Experimental on measurement of thermal conductivity of phase change suspended fluid by transient hot wire method[J]. Science Technology and Engineering, 2023, 23(6): 2573-2578.
[52] 张亚磊, 崔海亭, 王晨, 等. 基于低谷电的太阳能-地源热泵相变蓄热供暖系统研究[J]. 储能科学与技术, 2023, 12(12): 3789-3798.
doi: 10.19799/j.cnki.2095-4239.2023.0446
ZHANG Yalei, CUI Haiting, WANG Chen, et al. Research on phase change storage heating system of solar-ground source heat pump based on low current[J]. Energy Storage Science and Technology, 2023, 12(12): 3789-3798.
doi: 10.19799/j.cnki.2095-4239.2023.0446
[53] HUANG Q, LI X, ZHANG G, et al. Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering, 2021, 183: 116151-116165.
[54] 戴照峰, 姜竹, 赵东亮, 等. 果蔬用冷库相变材料研制及其系统应用[J]. 储能科学与技术, 2023, 12(12): 3720-3729.
doi: 10.19799/j.cnki.2095-4239.2023.0384
DAI Zhaofeng, JIANG Zhu, ZHAO Dongliang, et al. Development and system application of phase change material for cold storage of fruits and vegetables[J]. Energy Storage Science and Technology, 2023, 12(12): 3720-3729.
doi: 10.19799/j.cnki.2095-4239.2023.0384
[1] 柯文涛, 陈明, 郑淳天, 石小丽, 朱新生. 石蜡Pickering乳液及其微胶囊相变非织造材料的制备与性能[J]. 纺织学报, 2024, 45(07): 130-139.
[2] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[3] 吴珺秋, 李俊, 王敏. 相变冷却服热湿传递模型构建及其应用的研究进展[J]. 纺织学报, 2023, 44(08): 234-241.
[4] 帅旗, 孙硕, 成世杰, 张宏伟, 左丹英. 氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能[J]. 纺织学报, 2023, 44(08): 126-132.
[5] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[6] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[7] 朱晓荣, 向攸慧, 何佳臻, 翟丽娜. 低辐射热条件下附加相变材料织物的蓄放热双重特性[J]. 纺织学报, 2023, 44(06): 152-160.
[8] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[9] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[10] 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42.
[11] 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202.
[12] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[13] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[14] 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9.
[15] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!