纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 244-251.doi: 10.13475/j.fzxb.20230401702
蔺志浩1, 房磊2, 贾娇娇3,4,5,6, 扈延龄1(), 房宽峻3,4,5,6
LIN Zhihao1, FANG Lei2, JIA Jiaojiao3,4,5,6, HU Yanling1(), FANG Kuanjun3,4,5,6
摘要:
伤口愈合是一个动态的、复杂的、多细胞参与的过程,理想的创面修复材料对促进伤口的愈合至关重要,为实现更好的创面愈合,可在创面修复材料中添加生长因子等物质。首先总结了碱性成纤维细胞生长因子、表皮生长因子、血小板衍生生长因子这3种生长因子的作用及其在创面愈合过程中的作用环节及机制,阐述了微纳米纤维支架、微球和纳米颗粒等生长因子的可控释放递送策略,重点讨论了负载一种或多种生长因子的微纳米纤维创面敷料。研究指出,生长因子的作用已被广泛证实,不同的生长因子参与伤口愈合的不同阶段,微纳米纤维作为一种可控释放的递送系统及理想的创面修复材料,在皮肤创面愈合医用敷料领域拥有广泛的应用前景。
中图分类号:
[1] | LIANG Y, ZHAO X, HU T, et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing[J]. Small, 2019. DOI: 10.1002/smll.201900046. |
[2] | XIAO Y, ZHAO H, MA X, et al. Hydrogel dressing containing basic fibroblast growth factor accelerating chronic wound healing in aged mouse model[J]. Molecules, 2022. DOI: 10.3390/molecules27196361. |
[3] |
LI Z, CHEN S, WU B, et al. Multifunctional dual ionic-covalent membranes for wound healing[J]. ACS Biomater Sci Eng, 2020, 6(12): 6949-6960.
doi: 10.1021/acsbiomaterials.0c01512 pmid: 33320625 |
[4] | LI P, RUAN L, WANG R, et al. Electrospun scaffold of collagen and polycaprolactone containing ZnO quantum dots for skin wound regeneration[J]. Journal of Bionic Engineering, 2021, 18(6): 1378-1390. |
[5] | MUTHUKUMAR T, ANBARASU K, PRAKASH D, et al. Effect of growth factors and pro-inflammatory cytokines by the collagen biocomposite dressing material containing Macrotyloma uniflorum plant extract: in vivo wound healing[J]. Colloids Surf B Biointerfaces, 2014, 121: 178-188. |
[6] | LIN M J, LU M C, CHANG H Y. Sustained release of Insulin-like growth factor-1 from Bombyx mori L. silk fibroin delivery for diabetic wound therapy[J]. International Journal of Molecular Sciences, 2021. DOI: 10.3390/ijms22126267. |
[7] | ZHANG J, ZHENG Y, LEE J, et al. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing[J]. Nat Commun, 2021. DOI: 10.1038/s41467-021-21964-0. |
[8] |
XIE Z, PARAS C B, WENG H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing[J]. Acta Biomater, 2013, 9(12): 9351-9359.
doi: 10.1016/j.actbio.2013.07.030 pmid: 23917148 |
[9] | RAMANATHAN G, MUTHUKUMAR T, TIRICHURAPALLI Sivagnanam U. In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing[J]. International Journal of Molecular Sciences, 2017, 814: 45-55. |
[10] | MIGUEL S P, FIGUEIRA D R, SIMõES D, et al. Electrospun polymeric nanofibres as wound dressings: a review[J]. Colloids Surf B Biointerfaces, 2018, 169: 60-71. |
[11] | HU H, TANG Y, PANG L, et al. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly(lactic-co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 22939-22950. |
[12] |
TORT S, DEMIRÖZ F T, COŞKUN CEVHER Ş, et al. The effect of a new wound dressing on wound healing: biochemical and histopathological evaluation[J]. Burns, 2020, 46(1): 143-155.
doi: S0305-4179(18)30976-8 pmid: 31862280 |
[13] | GARCIA-ORUE I, GAINZA G, GUTIERREZ F B, et al. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications[J]. International Journal of Pharmaceutics, 2017, 523(2): 556-566. |
[14] |
HAJIALYANI M, TEWARI D, SOBARZO-SáNCHEZ E, et al. Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems[J]. International Journal of Nanomedicine, 2018, 13: 5023-5043.
doi: 10.2147/IJN.S174072 pmid: 30214204 |
[15] | ZARRINTAJ P, MOGHADDAM A S, MANOUCHEHRI S, et al. Can regenerative medicine and nanotechnology combine to heal wounds? the search for the ideal wound dressing[J]. Nanomedicine (Lond), 2017, 12(19): 2403-2422. |
[16] | MCHUGH K J, TAO S L, SAINT-GENIEZ M. A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering[J]. Journal of Materials Science: Materials in Medicine, 2013, 24(7): 1659-1670. |
[17] | CHOI S M, RYU H A, LEE K M, et al. Development of stabilized growth factor-loaded hyaluronate-collagen dressing (HCD) matrix for impaired wound healing[J]. Biomaterials Research, 2016. DOI: 10.1186/s40824-016-0056-4. |
[18] |
VIJAYAN A, C L V, KUMAR G S V. Dual growth factor entrapped nanoparticle enriched alginate wafer-based delivery system for suppurating wounds[J]. International Journal of Biological Macromolecules, 2022, 208: 172-181.
doi: 10.1016/j.ijbiomac.2022.03.068 pmid: 35304195 |
[19] | BENNETT N T, SCHULTZ G S. Growth factors and wound healing: part II: role in normal and chronic wound healing[J]. American Journal of Surgery, 1993, 166(1): 74-81. |
[20] | LIN Y J, LEE G H, CHOU C W, et al. Stimulation of wound healing by PU/hydrogel composites containing fibroblast growth factor-2[J]. Journal of Materials Chemistry B, 2015, 3(9): 1931-1941. |
[21] | LIU T, DAN W, DAN N, et al. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications[J]. Materials Science & Engineering C:Materials For Biological Applications, 2017, 77: 202-211. |
[22] | HAUTMANN A, KEDILAYA D, STOJANOVIĆ S, et al. Free-standing multilayer films as growth factor reservoirs for future wound dressing applications[J]. Biomaterials Advances, 2022. DOI: 10.1016/j.bioadv.2022.213166. |
[23] |
XUAN X, ZHOU Y, CHEN A, et al. Silver crosslinked injectable bFGF-eluting supramolecular hydrogels speed up infected wound healing[J]. Journal of Materials Chemistry B, 2020, 8(7): 1359-1370.
doi: 10.1039/c9tb02331c pmid: 31840731 |
[24] |
CHEN A, HUANG W, WU L, et al. Bioactive ECM Mimic hyaluronic acid dressing via sustained releasing of bFGF for enhancing skin wound healing[J]. ACS Applied Bio Materials, 2020, 3(5): 3039-3048.
doi: 10.1021/acsabm.0c00096 pmid: 35025350 |
[25] | ASIRI A, SAIDIN S, SANI M H, et al. Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold[J]. Scientific Reports, 2021. DOI: 10.1038/s41598-021-85149-x. |
[26] |
SAKAMOTO M, MORIMOTO N, OGINO S, et al. Efficacy of gelatin gel sheets in sustaining the release of basic fibroblast growth factor for murine skin defects[J]. Journal of Surgical Research, 2016, 201(2): 378-387.
doi: 10.1016/j.jss.2015.11.045 pmid: 27020822 |
[27] |
HAJIMIRI M, SHAHVERDI S, ESFANDIARI M A, et al. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing[J]. Drug Development and Industrial Pharmacy, 2016, 42(5): 707-719.
doi: 10.3109/03639045.2015.1075030 pmid: 26289000 |
[28] |
GIL E S, PANILAITIS B, BELLAS E, et al. Functionalized silk biomaterials for wound healing[J]. Advanced Healthcare Materials, 2013, 2(1): 206-217.
doi: 10.1002/adhm.201200192 pmid: 23184644 |
[29] | PIAO Y L, ZHANG C Y, ZHANG Y, et al. Wound-healing effect of Antheraea pernyi epidermal growth factor[J]. Insects, 2022. DOI: 10.3390/insects13110975. |
[30] |
PULAT M, KAHRAMAN A S, TAN N, et al. Sequential antibiotic and growth factor releasing chitosan-PAAM semi-IPN hydrogel as a novel wound dressing[J]. J Biomater Sci Polym Ed, 2013, 24(7): 807-819.
doi: 10.1080/09205063.2012.718613 pmid: 23594070 |
[31] |
NIIYAMA H, KUROYANAGI Y. Development of novel wound dressing composed of hyaluronic acid and collagen sponge containing epidermal growth factor and vitamin C derivative[J]. J Artif Organs, 2014, 17(1): 81-87.
doi: 10.1007/s10047-013-0737-x pmid: 24292853 |
[32] | UMAR A K, SRIWIDODO S, MAKSUM I P, et al. Film-forming spray of water-soluble chitosan containing liposome-coated human epidermal growth factor for wound healing[J]. Molecules, 2021. DOI: 10.3390/molecules26175326. |
[33] |
MARIIA K, ARIF M, SHI J, et al. Novel chitosan-ulvan hydrogel reinforcement by cellulose nanocrystals with epidermal growth factor for enhanced wound healing: in vitro and in vivo analysis[J]. Int J Biol Macromol, 2021, 183: 435-1846.
doi: 10.1016/j.ijbiomac.2021.04.156 pmid: 33932420 |
[34] | ZHU J, JIANG G, HONG W, et al. Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing[J]. Materials Science & Engineering C:Materials For Biological Applications, 2020. DOI: 10.1016/j.msec.2020.111273. |
[35] |
PICHETH G F, SIERAKOWSKI M R, WOEHL M A, et al. Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films[J]. Journal of Pharmaceutical Sciences, 2014, 103(12): 3958-3965.
doi: S0022-3549(15)30297-5 pmid: 25308839 |
[36] | PYUN D G, CHOI H J, YOON H S, et al. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: synthesis, characterization, in vitro and in vivo studies[J]. Colloids Surf B Biointerfaces, 2015, 135: 699-706. |
[37] | YUAN T T, DIGEORGE FOUSHEE A M, JOHNSON M C, et al. Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications[J]. Nanoscale Research Letters, 2018. DOI: 10.1186/s11671-018-2491-8. |
[38] |
CHENG B, LIU H W, FU X B, et al. Recombinant human platelet-derived growth factor enhanced dermal wound healing by a pathway involving ERK and c-FOS in diabetic rats[J]. Journal of Dermatological Science, 2007, 45(3): 193-201.
pmid: 17270401 |
[39] |
NOROUZI M, BOROUJENI S M, OMIDVARKORDSHOULI N, et al. Advances in skin regeneration: application of electrospun scaffolds[J]. Advanced Healthcare Materials, 2015, 4(8): 1114-1133.
doi: 10.1002/adhm.201500001 pmid: 25721694 |
[40] | DEPTUŁA M, KARPOWICZ P, WARDOWSKA A, et al. Development of a peptide derived from platelet-derived growth factor (PDGF-BB) into a potential drug candidate for the treatment of wounds[J]. Advances in Wound Care (New Rochelle), 2020, 9(12): 657-675. |
[41] | JANG J H, CASTANO O, KIM H W. Electrospun materials as potential platforms for bone tissue engineering[J]. Advanced Drug Delivery Reviews, 2009, 61(12): 1065-1083. |
[42] |
YANG Y, XIA T, ZHI W, et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor[J]. Biomaterials, 2011, 32(18): 4243-4254.
doi: 10.1016/j.biomaterials.2011.02.042 pmid: 21402405 |
[43] |
YENILMEZ E, BAŞARAN E, ARSLAN R, et al. Chitosan gel formulations containing egg yolk oil and epidermal growth factor for dermal burn treatment[J]. Pharmazie, 2015, 70(2): 67-73.
pmid: 25997244 |
[44] |
KIM D H, HUEGEL J, TAYLOR B L, et al. Biocompatibility and bioactivity of an FGF-loaded microsphere-based bilayer delivery system[J]. Acta Biomater, 2020, 111: 341-348.
doi: S1742-7061(20)30254-3 pmid: 32428684 |
[45] |
KORIA P. Delivery of growth factors for tissue regeneration and wound healing[J]. BioDrugs, 2012, 26(3): 163-175.
doi: 10.2165/11631850-000000000-00000 pmid: 22500904 |
[46] | LAI H J, KUAN C H, WU H C, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing[J]. Acta Biomater, 2014, 10(10): 4156-4166. |
[47] |
VIJAYAN A, C K N, VINOD KUMAR G S. ECM-mimicking nanofibrous scaffold enriched with dual growth factor carrying nanoparticles for diabetic wound healing[J]. Nanoscale Adv, 2021, 3(11): 3085-3092.
doi: 10.1039/d0na00926a pmid: 36133662 |
[48] |
KIM H S, YOO H S. In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes[J]. Acta Biomater, 2013, 9(7): 7371-7380.
doi: 10.1016/j.actbio.2013.03.018 pmid: 23528498 |
[49] | VOJOUDI E, BABALOO H. Application of electrospun nanofiber as drug delivery systems: a review[J]. Pharm Nanotechnol, 2023, 11(1): 10-24. |
[50] | DOOSTMOHAMMADI M, FOROOTANFAR H, RAMAKRISHNA S. Regenerative medicine and drug delivery: progress via electrospun biomaterials[J]. Mater Sci Eng C Mater Biol Appl, 2020. DOI: 10.1016/j.msec.2019.110521. |
[51] | KIM T H, KIM J J, KIM H W. Basic fibroblast growth factor-loaded, mineralized biopolymer-nanofiber scaffold improves adhesion and proliferation of rat mesenchymal stem cells[J]. Biotechnol Lett, 2014, 36(2): 383-390. |
[52] | ZHAO J, HAN F, ZHANG W, et al. Toward improved wound dressings: effects of polydopamine-decorated poly(lactic-co-glycolic acid) electrospinning incorporating basic fibroblast growth factor and ponericin G1[J]. RSC Adv, 2019, 9(57): 33038-33051. |
[53] | LIAO J L, ZHONG S, WANG S H, et al. Preparation and properties of a novel carbon nanotubes/poly(vinyl alcohol)/epidermal growth factor composite biological dressing[J]. Exp Ther Med, 2017, 14(3): 2341-2348. |
[54] |
GÜMÜŞDERELIO ĞLU M, DALKıRANO ĞLU S, AYDıN R S, et al. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix[J]. Journal of Biomedical Materials Research Part A, 2011, 98(3): 461-472.
doi: 10.1002/jbm.a.33143 pmid: 21661095 |
[55] |
DWIVEDI C, PANDEY I, PANDEY H, et al. In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor[J]. Journal of Biomedical Materials Research Part A, 2018, 106(3): 641-651.
doi: 10.1002/jbm.a.36268 pmid: 28986947 |
[56] |
CHOI J S, LEONG K W, YOO H S. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF)[J]. Biomaterials, 2008, 29(5): 587-596.
doi: 10.1016/j.biomaterials.2007.10.012 pmid: 17997153 |
[57] | BAEK J, LEE E, LOTZ M K, et al. Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration[J]. Nanomedicine, 2020. DOI: 10.1016/j.nano.2019.102090. |
[58] | LEE C H, LIU K S, CHENG C W, et al. Codelivery of sustainable antimicrobial agents and platelet-derived growth factor via biodegradable nanofibers for repair of diabetic infectious wounds[J]. ACS Infectious Diseases, 2020, 6(10): 2688-2697. |
[59] |
NEJADDEHBASHI F, HASHEMITABAR M, BAYATI V, et al. Application of polycaprolactone, chitosan, and collagen composite as a nanofibrous mat loaded with silver sulfadiazine and growth factors for wound dressing[J]. Artificial Organs, 2019, 43(4): 413-423.
doi: 10.1111/aor.13369 pmid: 30311249 |
[1] | 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9. |
[2] | 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41. |
[3] | 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80. |
[4] | 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120. |
[5] | 顾佳华, 戴鑫鑫, 邹专勇, 刘诗仪, 张显涛, 韩旭, 陆斌, 张寅江. 表面刻蚀/聚硅氧烷修饰纯棉水刺材料的制备及其性能[J]. 纺织学报, 2024, 45(02): 189-197. |
[6] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[7] | 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204. |
[8] | 秦益民. 含锌和含铜医用敷料的研究进展[J]. 纺织学报, 2023, 44(05): 213-219. |
[9] | 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92. |
[10] | 戴家木, 聂渡, 李素英, 张瑜, 张伟, 刘蓉. 纤维基人工神经导管的研究进展[J]. 纺织学报, 2022, 43(12): 190-196. |
[11] | 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8. |
[12] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[13] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[14] | 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93. |
[15] | 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186. |
|