纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 33-41.doi: 10.13475/j.fzxb.20230605701
WANG Qingpeng, ZHANG Haiyan, WANG Yuting, ZHANG Tao, ZHAO Yan()
摘要:
针对传统制冷技术存在能耗大、额外产生热量、排放温室气体等弊端,以聚环氧乙烷(PEO)为原料,基于静电纺丝技术制备PEO微纳米纤维膜,并采用共混法将纳米氧化铝(Al2O3)颗粒添加到PEO纺丝溶液中,通过静电纺丝制备出PEO/Al2O3微纳米纤维膜,用于日间被动辐射降温。分析了纤维膜的形貌、太阳光反射率、大气窗口波段红外光透过率、发射率以及日间辐射降温性能。结果表明:由于微纳米纤维结构和纳米Al2O3颗粒的有效散射,使纤维膜的平均太阳光反射率达到90.2%;PEO作为选择性辐射降温材料,结合Al2O3纳米颗粒的声子极化共振,使得PEO/Al2O3纤维膜在大气窗口波段的发射率为90.0%,当Al2O3的质量分数为4%时,在平均太阳光强度为712.3 W/m2、环境湿度为14.2%的条件下,相对于环境温度日间降温达6.1 ℃。
中图分类号:
[1] | MANDAL J, YANG Y, YU N F, et al. Paints as a scalable and effective radiative cooling technology for buildings[J]. Joule, 2020, 4(7): 1350-1356. |
[2] | BROWN J S, DOMANSKI P A. Review of alternative cooling technologies[J]. Applied Thermal Engineering, 2014, 64(1/2): 252-262. |
[3] | ZHANG Q, WANG S H, WANG X Y, et al. Recent progress in daytime radiative cooling: advanced material designs and applications[J]. Small Methods, 2022. DOI: 10.1002/smtd.202101379. |
[4] | ZHAO D L, AILI A, ZHAI Y, et al. Radiative sky cooling: fundamental principles, materials, and applications[J]. Applied Physics Reviews, 2019. DOI: 10.1063/1.5087281. |
[5] | LI Z H, CHEN Q Y, SONG Y, et al. Fundamentals, materials, and applications for daytime radiative cooling[J]. Advanced Materials Technologies, 2020. DOI: 10.1002/admt.201901007. |
[6] |
YIN X B, YANG R G, TAN G, et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786-791.
doi: 10.1126/science.abb0971 pmid: 33184205 |
[7] | STARK A K. Methods for rejecting daytime waste heat to outer space[J]. National Science Review, 2017, 4(6): 789-790. |
[8] | LIM X Z. The super-cool materials that send heat to space[J]. Nature, 2020, 577(7788): 18-20. |
[9] | 李晗, 张恒, 甄琪, 等. 辐射降温纤维材料的成型工艺及其应用研究进展[J]. 毛纺科技, 2023, 51(2): 119-128. |
LI Han, ZHANG Heng, ZHEN Qi, et al. Research progress on forming process and application of radiation cooling fiber materials[J]. Wool Textile Journal 2023, 51(2):119-128. | |
[10] | RAMAN A P, ABOU Anoma M, ZHU X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544. |
[11] | REPHAELI E, RAMAN A, FAN S H. Ultrabroad band photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 2013, 13(4): 1457-1461. |
[12] | HUANG M C, XUE C H, HUANG J Y, et al. A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.136239. |
[13] | ZHANG X S, YANG W F, SHAO Z W, et al. A moisture-wicking passive radiative cooling hierarchical metafabric[J]. ACS Nano, 2022, 16(2): 2188-2197. |
[14] | HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023. |
[15] | ZHONG S J, YI L M, ZHANG J W, et al. Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling[J]. Chemical Engineering Journal, 2021. 10.1016/j.cej.2020.127104. |
[16] | MIKHAIL B, THOMAS F, MARTIN S, et al. Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends[J]. Polymer Engineering and Science, 2001, 41(6): 982-989. |
[17] | SHI S, SI Y F, HAN Y T, et al. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202107938. |
[18] | ZHANG D X, ZHANG H Y, XU Z G, et al. Recent advances in electrospun membranes for radiative cooling[J]. Materials, 2023. DOI: 10.3390/ma16103677. |
[19] | KLEINE T S, LEE T, CAROTHERS K J, et al. Infrared fingerprint engineering: a molecular-design approach to long-wave infrared transparency with polymeric materials[J]. Angewandte Chemie-International Edition, 2019, 58(49): 17656-17660. |
[20] | YANG J H, LEI T D, YANG X, et al. Investigation of keratin/poly(ethylene oxide) nanofiber membrane prepared with different post-crosslinking method[J]. Fibers and Polymers, 2023, 24(2): 715-727. |
[21] | WANG X, LIU X H, LI Z Y, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201907562. |
[22] | 李海涛, 樊利存, 程浩艳, 等. 烧结工艺对纳米晶种微晶陶瓷刚玉磨料结构与性能的影响[J]. 硅酸盐通报, 2023, 42(6): 2182-2189. |
LI Haitao, FAN Licun, CHENG Haoyan, et al. Effect of sintering process on structure and properties of microcrystalline ceramic corundum abrasive with nano-seed[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2182-2189. | |
[23] | JING W L, ZHANG S, ZHANG W. Scalable and flexible electrospun film for daytime subambient radiative cooling[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29558-29566. |
[24] | LI M, ZHANG M P, MAHAR F K, et al. Fabrication of fibrous nanofiber membranes for passive radiation cooling[J]. Journal of Materials Science, 2022, 57(33): 16080-16090. |
[25] | 吴钦鑫, 侯成义, 李耀刚, 等. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(9): 24-30. |
WU Qinxin, HOU Chengyi, LI Yaogang, et al. Radiative cooling nanofiber medical fabrics and sensor system integration[J]. Journal of Textile Research, 2021, 42(9): 24-30. | |
[26] |
LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 2021, 16(2): 153-158.
doi: 10.1038/s41565-020-00800-4 pmid: 33199884 |
[27] | 张帅, 荆为龙, 朱海涛. PMMA基复合薄膜的日间辐射制冷特性研究[J]. 化工新型材料, 2022, 50(3): 94-99. |
ZHANG Shuai, JING Weilong, ZHU Haitao. Study on the daytime radiant cooling property of PMMA-based composite film[J]. New Chemical Materials, 2022, 50(3): 94-99. | |
[28] |
钟明峰, 程海鑫, 张志杰, 等. 辐射制冷纳米复合纤维的制备与应用[J]. 华南理工大学学报(自然科学版), 2021, 49(9): 95-100.
doi: 10.12141/j.issn.1000-565X.200659 |
ZHONG Mingfeng, CHENG Haixin, ZHANG Zhijie, et al. Preparation and application of radiative cooling nanocomposite fiber[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(9): 95-100. |
[1] | 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9. |
[2] | 蔺志浩, 房磊, 贾娇娇, 扈延龄, 房宽峻. 负载生长因子的微纳米纤维创面敷料的制备与应用研究进展[J]. 纺织学报, 2024, 45(09): 244-251. |
[3] | 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32. |
[4] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[5] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
[6] | 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126. |
[7] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141. |
[8] | 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25. |
[9] | 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43. |
[10] | 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53. |
[11] | 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80. |
[12] | 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23. |
[13] | 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239. |
[14] | 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209. |
[15] | 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31. |
|