纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 56-62.doi: 10.13475/j.fzxb.20230700801

• 纤维材料 • 上一篇    下一篇

基于三维显微镜成像的墨西哥红酸枝内部纤维分布及结构形态表征

周领辉1,2, 祝成炎1,2, 金肖克1,2, 马雷雷1,2, 陈海相2, 田伟1,2()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2023-07-04 修回日期:2024-01-04 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 田伟(1978—),女,教授,博士。主要研究方向为纺织结构复合材料、功能性纺织品及非织造布。E-mail: tianwei_zstu@126.com
  • 作者简介:周领辉(1999—),男,硕士生。主要研究方向为仿生结构复合材料。

Characterization of internal fiber distribution and structural morphology of Mexican red acid branch based on three-dimensional microscope imaging

ZHOU Linghui1,2, ZHU Chengyan1,2, JIN Xiaoke1,2, MA Leilei1,2, CHEN Haixiang2, TIAN Wei1,2()   

  1. 1. College of Textile Science and Engineering (International Institute of silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Advanced Textile Materials and Preparation Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-07-04 Revised:2024-01-04 Published:2024-09-15 Online:2024-09-15

摘要:

为研究设计出轻质、高强的纤维增强仿木复合材料,借助X射线三维显微镜分析墨西哥红酸枝(MRAB)孔隙结构的形态与分布,测量了孔隙结构的尺寸和面积,并根据孔隙面积计算孔隙率;借助扫描电子显微镜观察木纤维的结构形态,并利用X射线粉末衍射仪测量出微纤丝角来表征木纤维的取向度。研究结果表明:MRAB内部孔隙主要分布在导管、木射线、轴向薄壁组织和微孔等结构中,在横切面上孔隙主要呈线状和类圆形,在径切面上主要呈线状和纺锤状,在弦切面上主要呈类圆形和纺锤状;MRAB内部的孔隙率为31.27%,孔隙率由髓心到树皮逐渐变大,木纤维沿轴向紧密平行排列,微纤丝角为3.27°;可将MRAB微观结构作为仿生依据,通过控制织物种类、树脂、产生孔隙的方法和铺层方向等因素来实现全新高性能仿木纤维增强复合材料的结构设计。

关键词: X射线三维显微镜, 墨西哥红酸枝, 仿木复合材料, 孔隙, 木纤维

Abstract:

Objective Under the evolution of billions of years, all things in nature have gradually formed the structure that is most suitable for the environment and has excellent performance. Therefore, studying the microstructure of such biomaterials and applying them to the bionic design of composite structures is one of the effective ways to develop high-performance composite materials.Wood is one of the materials with good mechanical properties in nature,and its density is small.At present,most of the imitation wood materials on the market are bionic from the function and appearance.Among them,the most is wood-plastic composite material, which is used for producing products with similar appearance and good mechanical properties at a lower cost,but it can not replace wood in terms of lightweight and elastic modulus.The superior performance of wood is closely related to the composition and distribution of its internal structure.Starting from the internal structure of wood,structural imitation wood is expected to have the advantages of mechanical properties,lightweight and elastic modulus of wood.

Method In order to study the structural characteristics and distribution of Mexican red acid branch(MRAB),the structures of pores in MRAB were studied by X-ray three-dimensional microscope.The size and area of pores were measured, and the morphology and distribution of pores in each component structure were analyzed. The porosity is calculated according to the pore area of each structure, and the pore distribution was analyzed.At the same time,the structure of wood fiber was observed by scanning electron microscope,and the microfibril angle was measured by X-ray powder diffractometer to characterize the orientation degree of wood fiber.

Results The results showed that: 1) the pores of MRAB are mainly distributed in vessels, wood rays, axial parenchyma and micropores, and the pores are mainly linear and round-like on the transverse section. On the radial section, it is mainly linear and spindle-shaped ; on the string section, it is mainly round and spindle-shaped. The diameter of the catheter hole was 109.53 μm, and the density was 2.83 /mm2; the average pore diameter of wood ray was 13.01 μm and the pores of the axial parenchyma are usually composed of two spindle-shaped cell cavities with an average pore diameter of 20.19 μm; 2) the porosity of MRAB is 31.27%, and the pore distribution increases slowly from inside to outside; and 3) wood fibers are closely arranged in parallel along the axial direction, and the microfibril angle is 3.27°, which is smaller than the microfibril angle of most wood, giving wood superior mechanical properties. The transverse mechanical properties are mainly provided by wood rays, and lignin acts as a stress buffer between wood fibers.

Conclusion Since the Mexican red sour branch is a natural cellulose composite material with excellent performance, it can be used as an object for the design of composite imitation wood. Through the analysis of its internal structure, it can be cut from three aspects: pore, wood fiber, wood ray (fiber reinforcement) and lignin (resin matrix) related to fiber reinforced composites. The structural design of high-performance wood-like fiber reinforced composites was realized by unidirectional fabric, resin, pore generation method and ply direction,and then prepare lightweight and high-strength fiber-reinforced composites.

Key words: X-ray three-dimensional microscope, Mexican red acid branch, wood-like composite, pore, wood fiber

中图分类号: 

  • TS101.4

表1

3种木材的密度及力学性能测试结果"

木材类别 密度/
(g·cm-3)
抗弯曲强度/
MPa
抗冲击强度/
MPa
MRAB 1.13 206.18 124.30
红杉木 1.10 144.18 79.20
黑胡桃木 0.67 97.31 36.50

图1

MRAB三维重构图"

图2

MRAB横切面图像"

图3

MRAB横切面各组分示意图"

图4

导管弦向直径分布图"

图5

木射线、轴向薄壁组织孔隙三切面图"

图6

木射线孔隙直径分布图"

图7

轴向薄壁组织孔隙直径分布图"

图8

横切面划分示意图"

表2

横切面5个区域的孔隙率"

区域1 区域2 区域3 区域4 区域5
30.48 30.86 31.07 31.11 31.39

图9

木纤维径切面扫描电镜照片"

图10

木纤维宽度分布图"

图11

MRAB微纤丝角的X射线衍射图"

[1] 杨立宁, 郑东昊, 王立新, 等. 基于蜻蜓翅脉结构的连续碳纤维增强树脂基复合材料仿生设计与增材制造[J]. 化工进展, 2022, 41(11): 5961-5967.
doi: 10.16085/j.issn.1000-6613.2022-0211
YANG Lining, ZHENG Donghao, WANG Lixin, et al. Bionic design and additive manufacturing of continuous carbon fiber reinforced resin matrix composites based on dragonfly wing vein structure[J]. Chemicalprogress, 2022, 41 (11): 5961-5967.
[2] 陈海鸟, 田伟, 金肖克, 等. 基于三维显微成像的毛竹横截面结构表征[J]. 纺织学报, 2021, 42(12): 49-54.
doi: 10.13475/j.fzxb.20201208206
CHEN Hainiao, TIAN Wei, JIN Xiaoke, et al. Structural characterization of moso bamboo cross-sections based on three-dimensional microscopic imaging[J]. Journal of Textile Research, 2021, 42(12): 49-54.
doi: 10.13475/j.fzxb.20201208206
[3] 张志礼, 王新婷, 李凤凤, 等. 废弃塑料实现木塑复合材料的制备及其性能探究[J]. 包装工程, 2022, 43(11):24-30.
ZHANG Zhili, WANG Xinting, LI Fengfeng, et al. Preparation and properties of wood-plastic composites by waste plastics[J]. Packaging Engineering, 2022, 43(11): 24-30.
[4] 朱启清. 论仿木材料在公共场所设计中的应用分析[J]. 工业设计, 2019(6): 82-83.
ZHU Qiqing. On the application of imitation wood materials in the design of public places[J]. Industrial Design, 2019(6): 82-83.
[5] ZHANG F, LI L, ZHANG L, et al. Determination of elastic constants and mechanical property parameters of five commonly used woods for furniture[J]. Forestry Machinery & Woodworking Equipment, 2012, 40(1): 16-19.
[6] 赵广杰. 木材中的纳米尺度、纳米木材及木材-无机纳米复合材料[J]. 北京林业大学学报, 2002, 24(Z1): 208-211.
ZHAO Guangjie. Nanoscale,nanowood and wood-inorganic nanocomposites in wood[J]. Journal of Beijing Forestry University, 2002, 24(Z1): 208-211.
[7] SALMÉN L, BERGSTRM E. Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR[J]. Cellulose, 2009, 16(6): 975-982.
[8] 孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5): 50-58.
SUN Haiyan, SU Minglei, LÜ Jianxiong, et al. Research progress on effects of cell wall microfibril angle andcrystalline region on physical and mechanical properties of wood[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(5): 50-58.
[9] 陈居静. 六种酸枝类木材结构特征及相关属性的研究[D]. 福建农林大学, 2013: 44-45.
CHEN Jujing. Study on the structural characteristics andrelated properties of six kinds of acid wood[D]. Fujian Agriculture and Forestry University, 2013: 44-45.
[10] 赵敏, 陈瑞英. 微凹黄檀木材的构造特征[J]. 安徽农学通报, 2016, 22(1): 9, 22.
ZHAO Min, CHEN Ruiying. Structural characteristics of Dalbergia microconcave wood[J]. Anhui Agricultural Science Bulletin, 2016, 22(1): 9, 22.
[11] 耿汇泉, 金珲, 周新甲, 等. 基于X-CT技术的木材三维孔隙结构评定与量化研究[J]. 森林工程, 2021, 37(5): 43-49.
GENG Huiquan, JIN Huan, ZHOU Xinjia, et al. Evaluation and quantification of three-dimensional pore structure of wood based on X-CT technology[J]. Forest Engineering, 2021, 37(5): 43-49.
[12] 许苗苗. 碱催化有机溶剂法分离提取农林生物质木质素及其结构表征[D]. 济南: 齐鲁工业大学, 2020: 58.
XU Miaomiao. Separation and extraction of lignin from agricultural and forestry biomass by alkali-catalyzed organic solvent method and its structural characteriza-tion[D]. Jinan: Qilu university of technology, 2020: 58.
[13] CHEN M, WANG C, ZHANG S, et al. Comparative study on microfibril angle of six bamboo species[J]. Journal of Anhui Agricultural University, 2015, 42(1): 31-33.
[14] 何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 157-162.
doi: 10.3969/j.issn.1000-2006.2017.02.023
HE Sheng, XU Jun, WU Zaixing, et al. Comparison of pore structure between bamboo and pine wood[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(2): 157-162.
[15] YANG J, CHEN P, GAO P. Preparation and properties of lightweight high-strength epoxy resin foam that can befoamed at room temperature[J]. China Plastics, 2022, 36 (10): 7-14.
[16] 黄赤, 汪波, 秦岩, 等. 空心玻璃微球含量对环氧复合泡沫塑料性能的影响[J]. 复合材料学报, 2016, 33(8): 1630-1637.
HUANG Chi, WANG Bo, QIN Yan, et al. Effect of hollow glass microsphere content on the properties of epoxy composite foam[J]. Journal of Composites, 2016, 33(8): 1630-1637.
[17] 周贤武, 邓丽萍, 王滋, 等. 沙柳的孔隙结构、微纤丝角和纤维素结晶度研究[J]. 西北农林科技大学学报(自然科学版), 2018, 46(1): 46-51.
ZHOU Xianwu, DENG Liping, WANG Zi, et al. Study onpore structure,microfibril angle and cellulose crystallinity of Salix psammophila[J]. Journal of Northwest A & F University (Natural Science Edition), 2018, 46(1): 46-51.
[18] SUN D, YANG W, LIU Q, et al. Geographical variation trend of wood microfibril angle among natural populations of Cyclocarya paliurus[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(3): 81-85.
[1] 赵雅杰, 丛洪莲, 丁玉琴, 董智佳. 基于组织模型的纬编面料透气性数字化预测[J]. 纺织学报, 2024, 45(06): 68-74.
[2] 方雪明, 董智佳, 丛洪莲, 丁玉琴. 单面纬编织物变化孔隙率结构设计与透气导湿性能评价[J]. 纺织学报, 2024, 45(05): 51-59.
[3] 梅宝龙, 董九志, 任洪庆, 蒋秀明. 基于多维度建模的碳/碳软硬混编预制体孔隙分析与单胞模型[J]. 纺织学报, 2023, 44(09): 108-115.
[4] 杨柳, 李羽佳, 张鑫, 何文婧, 童胜昊, 马磊, 张毅, 张瑞云. 色纺针织物紧密程度对颜色预测的影响[J]. 纺织学报, 2022, 43(05): 104-108.
[5] 梅宝龙, 董九志, 杨涛, 蒋秀明, 任洪庆. 三维四向碳/碳预制件微孔板压实致密关键技术[J]. 纺织学报, 2022, 43(05): 116-123.
[6] 陈海鸟, 田伟, 金肖克, 张红霞, 李艳清, 祝成炎. 基于三维显微成像的毛竹横截面结构表征[J]. 纺织学报, 2021, 42(12): 49-54.
[7] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 喷墨印花预处理对织物组织结构的影响[J]. 纺织学报, 2019, 40(05): 84-90.
[8] 刘赛, 郑冬明, 潘行星, 刘贵, 杜赵群. 交叉螺旋结构拉胀纱线及其织物的成形与表征[J]. 纺织学报, 2019, 40(02): 26-29.
[9] 张文娟, 纪峰, 张瑞云, 赵晓杰, 王妮, 王俊丽, 张建祥. 毛织物孔隙特征与透湿性关系[J]. 纺织学报, 2019, 40(01): 67-72.
[10] 田伟 雷新 从明芳 祝成炎. 纺粘非织造布制备工艺与性能的关系[J]. 纺织学报, 2015, 36(11): 68-71.
[11] 金关秀 应伟伟 雷新 从明芳 祝成炎. 纺粘非织造布孔隙形状的定量分析[J]. 纺织学报, 2015, 36(08): 56-61.
[12] 梁翠芳 陈霞 傅婷 卜佳仙 万贤福 汪军. 基于图像处理的网格圈织物孔隙率检测[J]. 纺织学报, 2014, 35(5): 49-0.
[13] 王立新, 范雪荣, 孙友昌, 柴蕾. 基于纤维孔隙状况的皮革服装材料热湿舒适性的比较[J]. 纺织学报, 2012, 33(8): 97-102.
[14] 周明, 王鸿博, 王银利, 高卫东. 基于图像处理技术的纳米纤维膜孔隙率表征[J]. 纺织学报, 2012, 33(1): 20-23.
[15] 高晓艳;张露;潘志娟. 静电纺聚酰胺6纤维复合材料的孔隙特征及其过滤性能[J]. 纺织学报, 2010, 31(1): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!