纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 1-8.doi: 10.13475/j.fzxb.20230708301

• 纤维材料 •    下一篇

聚对苯二甲酸乙二醇酯基碳点热解法制备及其在阻燃改性中的应用

邴琳涵1, 王锐1,2, 吴雨航1, 刘博同1, 黄寒江1, 魏建斐1,2()   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
  • 收稿日期:2023-10-19 修回日期:2024-07-13 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 魏建斐(1986—),男,副教授,博士。主要研究方向为纺织废弃物的高值利用及功能化纤维材料制备。E-mail:weijianfei@bift.edu.cn
  • 作者简介:邴琳涵(2001—),女,硕士生。主要研究方向为阻燃聚酯材料制备。
  • 基金资助:
    北京市自然科学基金面上项目(2222054);北京市教委科技计划一般项目(KM202110012007);北京服装学院高水平教师队伍建设专项资金(BIFTXJ202225);北京学者项目(RCQJ20303)

Preparation of PET-based carbon dots by pyrolysis and its application in PET flame retardancy

BING Linhan1, WANG Rui1,2, WU Yuhang1, LIU Botong1, HUANG Hanjiang1, WEI Jianfei1,2()   

  1. 1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2023-10-19 Revised:2024-07-13 Published:2024-10-15 Online:2024-10-22

摘要:

为提高聚对苯二甲酸乙二醇酯(PET)阻燃性能,以PET废弃物为前驱体,采用热解法制备了PET基碳点(PET-CDs),并采用熔融共混法将其与PET混合制备PET复合物(PET-CDs-PET)。借助透射电子显微镜、X射线光电子能谱、傅里叶红外光谱对PET-CDs进行结构分析,借助荧光光谱仪、紫外分析仪研究了PET-CDs的光学性能,通过极限氧指数、垂直燃烧及锥形量热探究了不同添加量下PET-CDs对PET阻燃性能的影响,并采用材料强力测试仪研究了PET-CDs-PET的力学性能。结果表明:所制备的PET-CDs的荧光为激发波长依赖型,最佳激发波长和最佳发射波长分别为320 nm和420 nm,荧光量子产率为25.73%;当PET-CDs的添加质量分数为1%时,LOI值达30%,UL-94等级达到V-2级,总热释放量及总烟释放量略有降低,CO释放峰值下降42%,CO2释放峰值下降35.9%。

关键词: 聚对苯二甲酸乙二醇酯, 碳点, 热解, 阻燃改性, 共混, 聚酯回收利用

Abstract:

Objective In order to improve the flame retardant properties of polyethylene terephthalate (PET), PET-based carbon dots (PET-CDs) were prepared by pyrolysis using PET waste as a precursor, and PET com-plexes (PET-CDs-PET) were prepared by mixing them with PET using physical blending method. The transformation from PET waste to flame-retardant PET was achieved. PET oligomers were prepared by microwave method, and then PET-CDs were prepared by pyrolysis reaction of PET oligomers with ethylenediaminetetraacetic acid. PET-CDs of different qualities were crushed in a pulveriser together with PET slices to obtain four kinds of PET-CDs-PETs with different contents of PET-CDs.

Method Transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier infrared spectroscopy were used to analyse the structure of PET-CDs, and the optical properties of PET-CDs were investigated with the help of fluorescence spectrometer and UV analyser. The effects of different additive amounts of PET-CDs on the flame retardancy of PET were investigated by the limiting oxygen index (LOI), vertical combustion (UL-94), and cone calorimetry. The effect of PET-CDs on the flame retardancy of PET with different additions was also investigated by using a material. The mechanical properties of PET-CDs-PET were investigated by a material strength tester.

Results As far as the structure is concerned, the prepared PET-CDs are quasi-spherical, with uniform particle distribution and no agglomeration. The particle size ranged from 0.44 nm to 4.39 nm, the average particle size was 1.85 nm, the lattice spacing was 0.25 nm, and the surface contained hydroxyl, carboxyl, and amine functional groups. In terms of optical properties, the prepared PET-CDs ethanol solutions showed dark brown colour under indoor natural light and blue fluorescence in UV analyser when irradiated by UV lamp with wavelength of 365 nm. The fluorescence of PET-CDs ethanol solutions was typical excitation wavelength-dependent, with the optimal excitation wavelengths and emission wavelengths of 320 nm and 420 nm, respectively. The absolute fluorescence quantum yield reached 25.73% under the light excitation at 320 nm, and the UV-visible absorption spectrum had an obvious absorption peak at 293 nm. In terms of flame retardant properties, the thermal stability of PET-CDs met the requirements of blending with PET, and the residual carbon of PET was increased by adding PET-CDs into PET. The LOI values of PET-CDs was increased and then decreased after the addition of PET-CDs with different contents, but all of them were higher than that of pure PET. The UL-94 fire ratings were all V-2 with different additions of PET-CDs. The LOI value of PET-CDs 1%-PET was 30%, and there was no significant decrease in the mechanical properties of PET at this additive amount, so the optimal additive amount of PET-CDs was 1%. The total heat release of PET-CDs 1%-PET was decreased by 1.5%, the total smoke release by 8.1%, the peak value of CO by 42%, the peak value of CO2 by 35.9%.

Conclusion The preparation of CDs from PET waste as raw material can provide a new method for the reuse of waste, and the PET waste can be used in the flame retardant modification of PET materials after the preparation of CDs, forming a green and benign cycle. At the same time, the application of CDs in the flame retardant field not only broadens the scope of its application, but also provides a new flame retardant in this field.

Key words: polyethylene terephthalate, carbon dots, pyrolysis, flame retardant modification, co-mixing, polyester recycling and utilization

中图分类号: 

  • TQ317.9

表1

PET-CDs-PET的原料配比"

样品 PET-CDs质量 PET切片质量
纯PET 0 500
PET-CDs 1%-PET 5 495
PET-CDs 3%-PET 15 485
PET-CDs 5%-PET 25 475

图1

PET-CDs的TEM照片"

图2

PET-CDs的XPS谱图"

图3

PET-CDs的FT-IR谱图"

图4

PET-CDs的紫外-可见吸收光谱"

图5

不同激发波长下PET-CDs的荧光发射谱图"

图6

PET-CDs的荧光量子产率"

图7

PET-CDs的热重曲线"

图8

PET和PET-CDs-PET的DSC曲线"

表2

PET-CDs-PET的DSC分析数据"

样品 Tg Tcc Tm Tmc ΔTmc
纯PET 72 134 245 208 37
PET-CDs 1%-PET 71 121 247 202 45
PET-CDs 3%-PET 70 118 245 201 44
PET-CDs 5%-PET 69 116 243 200 43

表3

PET-CDs-PET的热重分析数据"

样品 T5%/℃ Tmax/℃ 残炭量(700 ℃)/%
纯PET 403.33 445.39 8.48
PET-CDs 1%-PET 401.51 445.97 11.52
PET-CDs 3%-PET 398.65 445.07 11.72
PET-CDs 5%-PET 391.99 440.67 8.64

表4

PET-CDs-PET的极限氧指数"

样品 LOI值/%
纯PET 23
PET-CDs 1%-PET 30
PET-CDs 3%-PET 26
PET-CDs 5%-PET 25

表5

PET-CDs-PET的垂直燃烧分析"

样品 t1/s t2/s 是否
熔滴
是否
引燃脱
脂棉
UL-94
等级
纯PET 42.0±10.7 8.7±6.9
PET-CDs 1%-PET 7.7± 1.8 2.8±2.0 V-2
PET-CDs 3%-PET 2.5± 0.3 1.3±0.3 V-2
PET-CDs 5%-PET 1.9± 0.5 2.5±0.7 V-2

表6

PET-CDs-PET的锥形量热数据"

样品 TTI/s PHRR/(kW·m-2) THR/(MJ·m2) CO峰值/(kg·kg-1) CO2峰值/(kg·kg-1) TSR/m2
纯PET 48 892.87 80.1 21.7 196.3 1 995
PET-CDs 1%-PET 60 702.98 78.9 12.6 125.8 1 834
PET-CDs 3%-PET 59 691.34 72.3 6.7 60.1 1 834
PET-CDs 5%-PET 67 677.78 65.7 4.6 58.6 1 710

图9

PET-CDs-PET锥形量热后炭层照片"

表7

PET-CDs-PET拉伸测试数据"

样品 拉伸
强度/MPa
弹性
模量/MPa
断裂
伸长率/%
纯PET 60.0±1.4 1 079.4±21.4 507.6±27.7
PET-CDs 1%-PET 49.7±1.0 1 045.2±20.3 480.0±11.2
PET-CDs 3%-PET 45.8±1.3 965.7±36.7 41.3±13.8
PET-CDs 5%-PET 8.8±1.0 921.1±63.2 2.8± 0.1
[1] CAO Fan, WANG Liyan, ZHENG Rongrong, et al. Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products[J] RSC Advances, 2022, 12(49):31564-31576.
doi: 10.1039/d2ra06499e pmid: 36380916
[2] 刘欣悦, 崔颖璐. PET塑料废弃物及微塑料生物降解与转化的研究现状与展望[J]. 生物加工过程, 2022, 2(2):226-234.
LIU Xinyue, CUI Yinglu. Current status and prospects of research on biodegradation and conversion of PET plastic waste and microplastics[J]. Bioprocessing, 2022, 2(2):226-234.
[3] 李志斌, 唐辉, 罗大伟, 等. 废弃PET化学回收及制备不饱和聚酯树脂的研究进展[J]. 化工进展, 2022, 41(6):3279-3292.
doi: 10.16085/j.issn.1000-6613.2021-1439
LI Zhibin, TANG Hui, LUO Dawei, et al. Progress in chemical recycling of waste PET and preparation of unsaturated polyester resin[J]. Chemical Progress, 2022, 41(6):3279-3292.
[4] 齐帆, 任海涛, 黄洁, 等. 碳量子点的制备、性质及应用[J]. 化学研究, 2020, 31(3):270-277.
QI Fan, REN Haitao, HUANG Jie, et al. Preparation, properties and applications of carbon quantum dots[J]. Chemistry Research, 2020, 31(3):270-277.
[5] FERNANDO K A Shiral, SAHU Sushant, LIU Yamin, et al. Carbon quantum dots and applications in photocatalytic energy conversion[J]. ACS Applied Materials & Interfaces, 2015, 7(16):8363-8376.
[6] BAPTISTA Frederico R, BELHOUT S A, GIORDANI S, et al. Recent developments in carbon nanomaterial sensors[J]. Chemical Society Reviews, 2015, 44:433-4453.
[7] 韩韬, 王群, 苗彩琴, 等. 荧光碳点检测铁离子的科研成果转化为教学实践[J]. 化工管理, 2023(6):5-8.
HAN Tao, WANG Qun, MIAO Caiqin, et al. Translation of scientific research results on fluorescent carbon spot detection of ferric ions into teaching practice[J]. Chemical Engineering Management, 2023(6):5-8.
[8] 刘洋, 刘竞, 孙宁, 等. 氮掺杂橙色荧光碳点的制备及其对Cu2+的检测[J]. 分析科学学报, 2022, 38(6):698-704.
LIU Yang, LIU Jing, SUN Ning, et al. Preparation of nitrogen-doped orange fluorescent carbon dots and their detection of Cu2+[J]. Journal of Analytical Science, 2022, 38(6):698-704.
[9] ZHAO Shaojing, YANG Ke, JIANG Lirong, et al. Polythiophene-based carbon dots for imaging-guided photodynamic therapy[J]. ACS Applied Nano Materials, 2021, 4(10):10528-10533.
[10] WANG Boyang, LU Siyu. The light of carbon dots: from mechanism to applications[J]. Matter, 2022, 5(1):110-149.
[11] LIU Chang, LI Hongying, CHENG Rui, et al. Facile synthesis, high fluorescence and flame retardancy of carbon dots[J]. Journal of Materials Science and Technology, 2021,104,164-170.
[12] GU Weiwen, DONG Zhenfeng, ZHANG Anying, et al. Functionalization of PET with carbon dots as copolymerizable flame retardants for the excellent smoke suppressants and mechanical properties[J]. Polymer Degradation and Stability, 2022.DOI:10.1016/j.polymdegradstab.2021.109766.
[13] 杨柳青. 锡锑基复合材料的结构及光催化性能研究[D]. 西安: 陕西科技大学, 2023:1-176.
YANG Liuqing. Study on the structure and photocatalytic properties of tin-antimony based composites[D]. Xi'an: Shaanxi University of Science and Technology, 2023:1-176.
[14] 黄春艳, 梁家能, 谭登峰, 等. RE-C22/NR复合材料的机械性能和动态力学性能[J]. 化学研究与应用, 2019, 31(9):1660-1666.
HUANG Chunyan, LIANG Jianeng, TAN Dengfeng, et al. Mechanical and dynamic mechanical properties of RE-C22/NR composites[J]. Chemical Research and Application, 2019, 31(9):1660-1666.
[15] 邓尧. 基于氧化石墨烯-纳米银复合材料的抑菌陶瓷膜制备及性能研究[D]. 广州: 华南理工大学, 2013:1-65.
DENG Yao. Preparation and performance study of antibacterial ceramic film based on graphene oxide-silver nanocomposite[D]. Guangzhou: South China University of Technology, 2013:1-65.
[16] 王锐, 刘彦麟, 刘蕴钰, 等. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(2):10-18.
WANG Rui, LIU Yanlin, LIU Yunyu, et al. Preparation of carbon dots using polyethylene terephthalate as precursor and its application[J]. Journal of Textile Research, 2022, 43(2):10-18.
[17] 杨冠草. 掺杂石墨烯量子点的制备、荧光发射机制及其在细胞成像中的应用[D]. 南京: 南京师范大学, 2018:1-73.
YANG Guancao. Preparation of doped graphene quantum dots, fluorescence emission mechanism and its application in cell imaging[D]. Nanjing: Nanjing Normal University, 2018:1-73.
[18] 顾伟文, 王文庆, 魏丽菲, 等. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(7):1-10.
GU Weiwen, WANG Wenqing, WEI Lifei, et al. Effect of carbon point on the properties of flame-retardant polyethylene terephthalate[J]. Journal of Textile Research, 2021, 42(7):1-10.
[19] 陈培玉. 阻燃用聚酰亚胺纤维混纺纱的开发与工艺研究[D]. 上海: 东华大学, 2015:1-69.
CHEN Peiyu. Development and process research on blended yarn of polyimide fibre for flame retardant[D]. Shanghai: Donghua University, 2015:1-69.
[20] 徐锡威. 可回收热固性环氧树脂的合成、表征及应用[D]. 杭州: 浙江工业大学, 2021:1-86.
XU Xiwei. Synthesis,characterisation and application of recyclable thermosetting epoxy resin[D]. Hangzhou: Zhejiang University of Technology, 2021:1-86.
[21] GU Weiwen, WEI Lifei, MA Tianyi, et al. Carbon dots as smoke suppression agents for the reduction of CO release in combustion and improvement of UV resistance towards phosphorus-containing polyester[J]. European Polymer Journal, 2022. DOI:10.1016/j.eurpolymj.2022.111642.
[22] 薛宝霞, 张铭铄, 杨色, 等. 一种碳点阻燃聚对苯二甲酸乙二醇酯的性能[J]. 高分子材料科学与工程, 2022, 38(7):53-59.
XUE Baoxia, ZHANG Mingshuo, YANG Se, et al. Properties of a carbon point flame retardant polyethylene terephthalate[J]. Polymer Materials Science and Engineering, 2022, 38(7):53-59.
[23] 王圣程, 张云峰, 禄利刚. 阻燃剂对聚氨醋保温材料力学性能的影响[J]. 新型建筑材料, 2018, 45(12):119-121.
WANG Shengcheng, ZHANG Yunfeng, LU Ligang. Effect of flame retardant on mechanical properties of polyurethane insulation materials[J]. New Building Materials, 2018, 45(12):119-121.
[1] 吴雨航, 魏建斐, 顾伟文, 王玉萍, 张安莹, 王锐. 共聚阻燃改性聚对苯二甲酸乙二醇酯的制备及其性能[J]. 纺织学报, 2024, 45(06): 1-10.
[2] 袁野, 张安莹, 魏丽菲, 高建伟, 陈咏, 王锐. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(04): 50-58.
[3] 秦子轩, 张恒, 李晗, 翟倩, 甄琪, 钱晓明. 非溶相共混熔喷非织造技术的研究进展[J]. 纺织学报, 2024, 45(03): 219-226.
[4] 谢艳霞, 张唯强, 徐亚宁, 赵书涵, 尹雯萱, 张文强, 韩旭. 商用聚对苯二甲酸乙二醇酯短纤维中低聚物析出机制及影响因素[J]. 纺织学报, 2024, 45(01): 65-73.
[5] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[6] 魏建斐, 马国聪, 张安莹, 吴雨航, 崔晓晴, 王锐. 明胶基碳点的热解法制备及其阻燃与防伪应用[J]. 纺织学报, 2023, 44(12): 106-114.
[7] 张文琪, 李莉莉, 胡泽旭, 魏丽菲, 相恒学, 朱美芳. 基于均三嗪环结构的聚己内酰胺6复合树脂制备及其抗熔滴阻燃特性[J]. 纺织学报, 2023, 44(11): 1-8.
[8] 谭晶, 石鑫, 于景超, 程礼盛, 杨涛, 杨卫民. 聚合物热解制备玻璃纤维表面碳纳米涂层及其导电性[J]. 纺织学报, 2023, 44(11): 36-44.
[9] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
[10] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[11] 夏榆, 姚菊明, 周杰, 毛梦慧, 张玉梅, 姚勇波. 聚丁二酸丁二醇酯/丝胶蛋白共混纤维的制备及其性能[J]. 纺织学报, 2023, 44(04): 1-7.
[12] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[13] 廖云珍, 朱亚楠, 葛明桥, 孙同明, 张欣宇. 聚对苯二甲酸乙二醇酯/SrAl2O4:Eu2+,Dy3+含杂纤维醇解及其回收产物性能[J]. 纺织学报, 2023, 44(02): 44-54.
[14] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[15] 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!