纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 72-79.doi: 10.13475/j.fzxb.20230605101

• 纺织工程 • 上一篇    下一篇

三维超高分子量聚乙烯纤维/苎麻混杂轮胎防滑织物的设计与制备

杨雨琪1,2,3, 高兴忠1,2,3(), 高世萱1,2,3, 陈宏4, 刘涛1,3   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.东华大学 高性能纤维制品教育部重点实验室, 上海 201620
    3.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    4.浙江千禧龙纤特种纤维股份有限公司, 浙江 金华 321017
  • 收稿日期:2023-06-26 修回日期:2024-02-05 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 高兴忠(1991—),男,副教授,博士。主要研究方向为纺织材料与纺织品设计。E-mail:gaoxz@xpu.edu.cn
  • 作者简介:杨雨琪(2000—),女,硕士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    国家自然科学基金青年科学基金项目(12302483);高性能纤维及制品教育部重点实验室开放课题(201990406);陕西省秦创原科学家+工程师项目(2023KXJ-005);陕西省碑林区科技计划项目(GX2210);先进纺织复合材料教育部重点实验室开放基金项目(MATC-2021-004)

Design and manufacture of three-dimensional ultra-high molecular weight polyethylene fiber/ramie hybridized fabric for tire anti-slip chains

YANG Yuqi1,2,3, GAO Xingzhong1,2,3(), GAO Shixuan1,2,3, CHEN Hong4, LIU Tao1,3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an, Shaanxi 710048, China
    4. Zhejiang Millennium Longxian Special Fiber Co., Ltd., Jinhua, Zhejiang 321017, China
  • Received:2023-06-26 Revised:2024-02-05 Published:2024-10-15 Online:2024-10-22

摘要:

为改善传统防滑链笨重、噪音大、易损伤轮胎等缺点,基于干、湿摩擦因数的差异通过三向正交混杂织物结构设计,制备超高分子量聚乙烯/苎麻混杂织物轮胎防滑套,分析测试了其摩擦因数、耐磨性能和实际路面效果。结果表明:混杂织物轮胎防滑套干湿摩擦因数的转变使车辆制动距离可缩短20.5%;其摩擦因数比市场商用防滑套增加了116%;由于层间间隔结构织物防滑套的苎麻含量最高,织物结构更紧密,混杂效应更明显,其防滑性能和耐磨性能均最好;通过吸湿性能测试,进一步揭示了该新型防滑织物防滑机制。本文研究成果可减少防滑链对车体损伤,拓展三维织物的应用领域,具有重要的实用价值。

关键词: 超高分子量聚乙烯纤维, 三向正交结构, 摩擦因数, 耐磨性能, 防滑

Abstract:

Objective Traditional anti-slip chains have drawbacks such as bulkiness, loud noise, and susceptibility to tire damage, which can cause damage to the vehicle, discomfort to passengers and other inconvenience during use. An initiative product which can overcome these shortcomings is urgently needed to improve the anti-slipping performance of vehicles. This research aims to develop a new type of tire chains with advantage of lightweight, low damage to vehicles, low noise and comfortable to passengers.

Method A new cloth-made tire anti-slipping chain based on three dimensional (3-D) orthogonal woven fabric structure was proposed in this research. Ultra-high molecular weight polyethylene (UHMWPE)fiber was used to supply high wear resistance of the tire chain. UHMWPE fiber is a high-performance organic fiber with the best wear resistance Although the friction coefficient of UHMWPE fiber is small, through the conversion of dry and wet friction and the design of the concave-convex shape of the fabric surface, the anti-slipping sleeves show good anti-slipping performance in the test. Therefore, the UHMWPE fiber can effectively improve the wear resistance of the tire anti-slipping sleeves without affecting its anti-slipping performance. High moisture absorption fiber Ramie was selected to absorb the water film on the snow or ice road, transforming the wetting friction to dry friction between the tire and snow road. The UHMWPE fiber and ramie were hybridized in making 3-D woven structure to provide the tire chain with excellent anti-slipping and wear resistance. 3-D woven fabrics with different hybrid structures were prepared to determine the optimal parameters.

Results When the car is in motion, the water absorbed by the fibers is thrown out due to centrifugal force, forming a complete anti-slip mechanism. 3-D woven structure fabric would satisfy the requirement of high strength and wear resistance to tire chain. Because the ramie fiber would absorb partial water in the road, the braking distance of vehicle was decreased by 20.5% when equipped with UHMWPE fiber/ramie anti-slipping chain. The friction coefficient of UHMWPE fiber/ramie cloth chain was found 116% higher than current commercial product. The moisture absorption ability of fabric plays a significant role in its anti-slipping performance. Due to the highest volume fraction of introduced ramie fiber, fabric with interlayer spacer structure shows higher moisture absorption compared to the other two structures. Under the state of spinning and throwing water, the moisture absorption rate was 3.4%, 2.6% and 2.4% for interlayer spacer structure, inner-layer spacer structure and sandwich structure, respectively. The surface of the fabric is ultra high molecular weight polyethylene, which has a certain barrier effect on water. Subsequently, interlayer spacer structure presents the highest fabric friction coefficient, which is 12.4% and 150.8% larger than the inner-layer and sandwich structure, respectively. In addition, the more introduction of ramie fiber in interlayer spacer fabric formed a tighter fabric structure. This increases the binding force between the yarns,weaving resistance,and provides higher wear-resistance to the fabric. Three hybrid woven fabric structure all shows desirable dehydration property.

Conclusion Adding moisture absorbing fiber can absorb water film on the snow or road, which can gradually transform wet friction into dry friction, and improving tire anti slip performance. The wear-resistance of the fabric can be improved by reasonably designing the hybrid structure of UHMWPE fiber/ramie. The actual road test verifies the desirable anti-slip performance of fabric prepared in this manuscript. However, the wear resistance of the anti-slip fabric still needs further testing. The results of this research provide a new method of wire anti-slip mechanism with higher anti-slip performance. which have important practical value.

Key words: ultra-high molecular weight polyethylene fiber, three dimensional orthogonal fabric, friction coefficient, wear resistance, anti-slip

中图分类号: 

  • TB332

图1

三向正交混杂结构织物示意图"

图2

轮胎防滑套防滑机制示意图"

图3

裸胎及使用防滑织物后轮胎材料摩擦因数"

图4

不同三向正交混杂织物吸湿率-吸湿时间曲线"

图5

不同三向正交混杂织物水接触角"

图6

不同三向正交混杂织物含水率-脱水时间曲线"

图7

不同结构混杂织物的交织阻力-位移曲线"

图8

不同三向正交混杂织物第1根纱线磨断次数"

图9

750个周期后不同三向正交混杂织物表面磨损情况"

图10

不同结构织物磨损形貌照片"

图11

实际路面测试"

[1] 王磊, 余功新, 王朝辉, 等. 面向降低路面湿滑事故率的交通量与抗滑阈值确定(英文)[J]. 长安大学学报(自然科学版), 2019, 39(5): 106-114.
WANG Lei, YU Gongxin, WANG Zhaohui, et al. Determination of traffic volume and anti-slip threshold for reducing road slip accident rate (in English)[J]. Journal of Chang'an University(Natural Science), 2019, 39(5): 106-114.
[2] 高萍, 李雪松. 多功能防滑链的模块化设计[J]. 工业设计, 2021(4): 157-158.
GAO Ping, LI Xuesong. Modular design of multi-functional anti-skid chain[J]. Industrial Design, 2021(4):157-158.
[3] LIANG X M, XING Y Z, LI L T, et al. An experimental study on the relation between friction force and real contact area[J]. Scientific Reports, 2021.DOI:10.1038/S41598-021-99909-2.
[4] CHEN B, DING P, WEI G, et al. A study on the contact characteristics of tires-roads based on pressure-sensitive film technology[J]. Roads Based on Pressure-Sensitive Film Technology, 2023. DOI:10.3390/ma16186323.
[5] YU M, KONG Y, YOU Z, et al. Anti-skid characteristics of asphalt pavement based on partial tire aquaplane conditions[J]. Materials, 2022.DOI:10.3390/mal15144976
[6] 黄俊奇, 罗吉良, 白雅. 冰雪路面防滑轮胎花纹夹缝的设计方法[J]. 轮胎工业, 2014, 34(9): 544-549.
HUANG Junqi, LUO Jiliang, BAI Ya. Design method of anti-skid tire pattern seam on ice and snow pavement[J]. Tire Industry, 2014, 34(9): 544-549.
[7] 储民. 一种轮胎及其防滑钉[J]. 轮胎工业, 2020, 40(6): 349.
CHU Min. The invention relates to a tire and a non-slip nail thereof[J]. Tire Industry, 2020, 40(6): 349.
[8] VOIKU I P, SERGEEVA T V, MALTSEV P N, et al. Development of adaptive anti-slipping spike for vehicle tires[J]. IOP Conference Series: Materials Science and Engineering, 2020. DOI: 10.1088/1757-899X/709/2/022014.
[9] CHARI S, HAINES T, VARGHESE P, et al. Are non-slip socks really non-slip? An analysis of slip resis-tance[J]. BMC Geriatrics, 2009.DOI:10.1186/1471-2318-9-39
[10] 姚明华. 汽车用踏垫的防滑技术[J]. 印染, 2010, 36(12):32-15.
YAO Minghua. Anti-slip technology of car tread pads[J]. China Dyeing & Finishing, 2010, 36(12):32-15.
[11] 李维宏, 凌蓉. 锦纶织物的树脂和防滑整理工艺探讨[J]. 染整技术, 2012, 34(7): 29-31.
LI Weihong, LING Rong. Discussion on resin and anti-slip finishing technology of nylon fabric[J]. Textile Dyeing and Finishing Journal, 2012, 34(7): 29-31.
[12] 冯园, 王宏球, 于俊荣. 耐磨改性超高分子量聚乙烯纤维的制备及性能[J]. 东华大学学报(自然科学版), 2022, 48(5): 42-47.
FENG Yuan, WANG Hongqiu, YU Junrong. Preparation and properties of wear-resistant modified ultra-high molecular weight polyethylene fiber[J]. Journal of Donghua University(Natural Science), 2022, 48(5): 42- 47.
[13] 张岩, 伍悦玥, 张雷, 等. 超高分子量聚乙烯角联锁机织物刺破性能的有限元分析[J]. 纺织高校基础科学学报, 2023, 36(6): 1-8.
ZHANG Yan, WU Yueyue, ZHANG Lei, et al. Finite element analysis of puncture properties of UHMWPE angular interlocking woven fabrics[J]. Basic Sciences Journal of Textile Universities, 2023, 36(6): 1-8.
[14] 付杰, 李伟萍, 黄献聪, 等. 新型超高分子量聚乙烯防弹膜材料研究进展[J]. 纺织高校基础科学学报, 2021, 34(4): 1-9.
FU Jie, LI Weiping, HUANG Xiancong, et al. Research progress of new UHMWPE bullet-proof film materials[J]. Basic Sciences Journal of Textile Universities, 2021, 34(4): 1-9.
[15] 王晶晶, 解芳, 李鑫. 苎麻织物与苎麻/棉混纺织物的防污整理[J]. 毛纺科技, 2017, 45(8): 36-39.
WANG Jingjing, XIE Fang, LI Xin. Antifouling finishing of ramie fabric and ramie/cotton blended fabric[J]. Wool Textile Journal, 2017, 45(8): 36-39.
[16] 胡新煜, 王琼, 秦辉, 等. 苎麻增强不饱和聚酯复合材料的力学性能[J]. 西安工程大学学报, 2011, 25(5): 608-612.
HU Xinyu, WANG Qiong, QIN Hui, et al. Mechanical properties of ramie reinforced unsaturated polyester composite materials[J]. Journal of Xi'an Polytechnic University, 2011, 25(5): 608-612.
[17] WU H, HUANG C, GUO R, et al. Influences of clamping methods and weaving architectures on the ballistic performance of 3D orthogonal woven fabrics[J]. Composite Structures, 2023. DOI:10.1016/j.compstruct.2023.117088.
[18] 马莹, 刘岳岩, 赵洋, 等. 基于芳纶平纹织物微观几何结构的纱线抽拔力学性能分析[J]. 纺织学报, 2022, 43(4): 47-54.
MA Ying, LIU Yueyan, ZHAO Yang, et al. Mechanical property analysis of yarn pull-out from aramid plain woven fabrics based on micro-geometry[J]. Journal of Textile Research, 2022, 43(4): 47-54.
[19] JIANG B, CHEN X, WANG H. Computational analysis of skid resistance of aircraft tire on wet runway pavement with different groove depths[J]. Road Materials and Pavement Design, 2023, 24(7): 1651-1668.
[1] 范奥运, 沈军炎, 杨雷, 李剑浩, 张志坚. 表面活性剂与纳米颗粒协同稳定Pickering有机硅乳液的制备及其应用性能[J]. 纺织学报, 2024, 45(01): 136-145.
[2] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
[3] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
[4] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[5] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[6] 郭敏, 高卫东, 朱博, 刘建立, 郭明瑞. 模拟织造状态下的浆纱耐磨性能测试方法[J]. 纺织学报, 2021, 42(11): 46-50.
[7] 李凤艳, 叶天宇, 展晓晴, 赵健, 李聃阳, 王瑞. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 82-88.
[8] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[9] 王晓春, 张健飞, 张丽平, 王娜娜, 闫金龙, 赵国樑. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020, 41(03): 78-83.
[10] 张欢, 闫俊, 王晓武, 焦安东, 李红, 郑来久, 何婷婷. 低温等离子体在涤纶表面改性中的应用[J]. 纺织学报, 2019, 40(07): 103-107.
[11] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[12] 杨小兵, 杨光, 谭雯莉, 郭婧雯, 丁松涛, 钟近艺. 化学防护服国际标准最新动态对我国GB 24539—2009修订的影响[J]. 纺织学报, 2019, 40(06): 165-170.
[13] 严燕钫 沈艳琴 武海良 张希文 姚一军. 玄武岩长丝表面低温等离子体处理及其浆丝集束性能[J]. 纺织学报, 2018, 39(12): 24-29.
[14] 向忠 刘杨 钱淼 吴震宇 胡旭东 周香琴. 纤维及其制品摩擦性能测试方法的研究进展[J]. 纺织学报, 2018, 39(11): 168-175.
[15] 张恒 甄琪 钱晓明 刘让同 张一风. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018, 39(04): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!