纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 80-88.doi: 10.13475/j.fzxb.20230506701

• 纺织工程 • 上一篇    下一篇

针织一体成形电容传感器设计及其性能

李露红, 罗天, 丛洪莲()   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2023-05-26 修回日期:2024-01-16 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 丛洪莲(1976—),女,教授,博士。主要研究方向为针织生产的数字化与智能化、针织产品的创新设计与性能。E-mail:cong-wkrc@163.com
  • 基金资助:
    国家自然科学基金项目(61902150);江苏省自然科学青年基金项目(BK20221094)

Design and performance of integrated capacitive sensor based on knitting

LI Luhong, LUO Tian, CONG Honglian()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-05-26 Revised:2024-01-16 Published:2024-10-15 Online:2024-10-22

摘要:

针对柔性电容传感器的电极易暴露于外界环境和穿着舒适性差等问题,提出一种表面绝缘电极与介质层一体成形的针织电容传感器设计方法。进一步对传感器的力学性能、表面绝缘性能和传感性能进行探究,揭示了织物厚度与间隔丝直径对其性能的影响。研究发现,织物厚度越大,间隔丝直径越小的传感器综合性能越好,其中厚度为8.0 mm、间隔丝直径为0.15 mm的传感器表现最佳,其灵敏度为0.033 kPa-1,并且具有较低的迟滞性和快速响应时间,对不同性质输入信号(不同压缩距离和不同压缩频率)均具有良好的分辨响应能力,且具有2 000次循环内的重复稳定性,在手部动作识别及液体称重场景展现出较好的压力传感能力。该传感器降低了生产成本,且应用过程中信号稳定,在可穿戴、医疗监测及人机交互界面展现出巨大的应用潜力。

关键词: 针织, 柔性电极, 间隔织物, 电容式传感器, 传感性能, 可穿戴柔性设备, 棉纱, 锦纶

Abstract:

Objective The electrode of the sensor is placed in the external environment, and the surface conductive material is prone to oxidation and spalling to a certain extent during long-term use, thus affecting the performance of the sensor. Moreover, the air permeability of the packaging material is poor, which reduces the comfort of the human body. Knitting technology can knit conductive yarn into fabric structures, playing a role in improving the comprehensive performance of the sensor. This paper proposes a knitted capacitance sensor with integrated surface insulating electrode and dielectric layer.

Method The sensor electrode was designed by double-yarn knitting technology, and cotton yarn and silver-plated yarn were selected for knitting. The cotton yarn always covered on the surface of the silver-coated yarn, so that the electrode was placed inside the sensor, avoiding direct contact with the external environment. Nylon monofilament was used to knit dielectric layer, which was combined with fabric electrode to form capacitive sensor. The spacer fabric capacitive sensor was further placed in the middle of the indenter of the Mark-10 tension/compression meter. A conductive yarn was drawn from each of the upper and lower fabric surfaces of the sensor to connect the positive and negative collets of the precision LCR digital bridge TH2830, making it a complete conductive path. During the test, the digital bridge monitors and recorded the capacitance change of the sensor in real time. By analyzing the relationship between capacitance and pressure, the influence of different spacer fabric thickness and spacer wire diameter on the sensor performance was investigated.

Results The mechanical properties, insulation properties, sensitivity, hysteresis, response time and repeatability of the sensor were studied and analyzed. With the increase of thickness, the pressure required to achieve the same strain decreases, and the fabric was more easily compressed. The surface insulation performance of the sensor was further characterized. When the electrode pen was placed in the inner layer of the spacer fabric, the digital multimeter would detect the resistance value, indicating that the surface layer was conductive and acted as the electrode layer of the sensor. However, when the electrode pen is placed on the fabric surface layer, the multimeter would not read the resistance value of the fabric surface correctly. During the whole compression process, sensitivity showed different values in different compression strain ranges. The general trend was that as the compressive stress of the fabric increased, the capacitance change rate of the sensor was positively correlated with it. As the thickness of the spacer fabric increased, the sensitivity of the sensor increased gradually. According to the hysteresis error calculation principle, the maximum hysteresis error occurred at the stress of 6.49 kPa, and the value is 2.24%. The response time curve of the sensor showed that the response time was less than 150 ms. From the the trend of capacitance change rate with time during 2 000 cycles, it can be seen that the sensor maintained stable input and output electrical characteristics during the initial compression stage. To further verify its practical application value in the real application scenario, the capacitive sensor designed was used for the monitoring and recognition of hand movements. Based on the curve peak characteristics, the sensor was able to easily distinguish fingertip press and boxing movements.

Conclusion It is found that the sensor with larger thickness and smaller diameter of spacer wire has better overall performance, in which the sensor with thickness of 8.0 mm and spacer wire diameter of 0.15 mm has the best performance with sensitivity being 0.033 kPa-1. Moreover, it has low hysteresis and fast response time, good resolution and response ability to input signals of different properties (different compression distances and different compression frequencies), and repeated stability within 2 000 cycles, showing good pressure sensing ability in hand motion recognition and liquid weighing scenarios. The sensor reduces the production cost, and the signal is stable during the application process, showing great application potential in wearable, medical monitoring and human-computer interaction interface.

Key words: knit, flexible electrode, spacer fabric, capacitive sensor, sensing performance, wearable flexible device, cotton yarn, polyamide

中图分类号: 

  • TS181.8

图1

电容传感器结构"

表1

间隔织物详细参数"

试样
编号
间隔丝直
径/mm
横跨针
m
横列数
n
织物厚
度/mm
A1 0.15 12 12 6.7
A2 0.15 16 16 7.5
A3 0.15 20 20 8.6
B1 0.20 12 12 6.5
B2 0.20 16 16 8.0
B3 0.20 20 20 8.8

图2

1个完整循环编织工艺图"

图3

间隔织物的表面实物图和不同试样的剖面图"

图4

电容式传感器测试装置原理图"

图5

传感器表面绝缘性能测试"

图6

不同厚度间隔织物单次压缩曲线"

图7

不同试样组装传感器10%~50%应变下的单次压缩-回复曲线"

图8

6种不同间隔织物结构的电容式传感器灵敏度"

图9

电容式传感器迟滞性测试"

图10

织物传感器响应时间"

图11

不同压缩频率下的电容变化率-时间曲线"

图12

织物传感器的重复压缩回复测试"

图13

手部动作监测识别"

[1] MOKHTARI F, CHENG Z, RAAD R, et al. Piezofibers to smart textiles: a review on recent advances and future outlook for wearable technology[J]. Journal of Materials Chemistry A, 2020, 8(19): 9496-9522.
[2] SHEN Z, LIU F, HUANG S, et al. Progress of flexible strain sensors for physiological signal monitoring[J]. Biosensors and Bioelectronics, 2022. DOI: 10.1016/j.bios.2022.114298.
[3] ZHANG X, KADIMISETTY K, YIN K, et al. Smart ring: a wearable device for hand hygiene compliance monitoring at the point-of-need[J]. Microsystem Technologies, 2019, 25(8): 3105-3110.
[4] YE X, TIAN M, LI M, et al. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability[J]. Coatings, 2022, 12(3): 302.
[5] HUANG Y, GAO L, ZHAO Y, et al. Highly flexible fabric strain sensor based on graphene nanoplatelet-polyaniline nanocomposites for human gesture recognition[J]. Journal of Applied Polymer Science, 2017. DOI: 10.1002/app.45340.
[6] 李港华, 王航, 史宝会, 等. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(2):96-102.
LI Ganghua, WANG Hang, SHI Baohui, et al. Construction of flexible electronic fabric and its Pressure Sensing Performance[J]. Journal of Textile Research, 2023, 44(2):96-102.
[7] 范梦晶, 吴玲娅, 周歆如, 等. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11):67-73.
doi: 10.13475/j.fzxb.20220708601
FAN Mengjing, WU Lingya, ZHOU Xinru, et al. Construction of capacitance sensor of silver-coated polyamide 6/polyamide 6 nanofiber cored yarn[J]. Journal of Textile Research, 2023, 44(11):67-73.
doi: 10.13475/j.fzxb.20220708601
[8] 熊莹, 陶肖明. 智能传感纺织品研究进展[J]. 针织工业, 2019(7): 8-12.
XIONG Ying, TAO Xiaoming. Research progress of intelligent sensing Textiles[J]. Knitting Industries, 2019(7): 8-12.
[9] 杜青, 李刚, 胡杰, 等. 基于C-PDMS介质层的柔性电容式传感器研究[J]. 仪表技术与传感器, 2019(2): 1-3,8.
DU Qing, LI Gang, HU Jie, et al. Research on flexible capacitive sensor based on C-PDMS dielectric Layer[J]. Instrument Technique and Sensor, 2019(2): 1-3,8.
[10] XIAO Y, HU H, GUO D, et al. A jet printing highly sensitive cotton/MWCNT fabric-based flexible capacitive sensor[J]. Sensors and Actuators A: Physical, 2023. DOI: 10.1016/j.sna.2023.114152.
[11] CAO S, LI R, PANAHI-SARMAD M, et al. A flexible and highly sensitive capacitive pressure sensor with microstructured dielectric tpu layer based on mesh fabric as template[J]. IEEE Sensors Journal, 2022, 22(21): 20276-20284.
[12] 牛丽, 刘青, 陈超余, 等. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(2):135-142.
NIU Li, LIU Qing, CHEN Chaoyu, et al. Bionic scales self-energized sensing fabric preparation and performance of knitting structure[J]. Journal of Textile Research, 2023, 44 (2): 135-142.
[13] 郭威东, 夏风林. 双针床超大隔距经编间隔织物生产实践[J]. 针织工业, 2019(4): 20-23.
GUO Weidong, XIA Fenglin. Production practice of double needle bed extra large space warp knitted space fabric[J]. Knitting Industry, 2019(4): 20-23.
[14] 缪旭红, 李筱一. 我国双针床经编技术及产品最新进展[J]. 纺织导报, 2015, (7): 30-34.
MIAO Xuhong, LI Xiaoyi. The latest development of chinese twin-bed warp knitting technology and pro-ducts[J]. Textile Review, 2015, (7): 30-34.
[15] 蒋高明, 丛洪莲. 现代经编技术最新进展[J]. 纺织导报, 2002(4): 14-18.
JIANG Gaoming, CONG Honglian. The latest development of modern warp knitting technology[J]. Textile Review, 2002(4): 14-18.
[16] 赵博宇. 针织全成形柔性电容式传感器设计及性能研究[D]. 无锡: 江南大学, 2022: 36-40.
ZHAO Boyu. Design and performance research of knitted full-formed flexible capacitive sensor[D]. Wuxi: Jiangnan University, 2022: 36-40.
[17] ZHANG B, XIANG Z M, ZHU S W, et al. Dual functional transparent film for proximity and pressure sensing[J]. Nano Research, 2014, 7(10): 1488-1496.
[18] ATALAY O. Textile-Based, interdigital, capacitive, soft-strain sensor for wearable applications[J]. Materials, 2018, 11(5): 768.
[19] 肖渊, 李红英, 李倩, 等棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(5): 79-83.
XIAO Yuan, LI Hongying, LI Qian, et al. Fabrication of flexible pressure sensor with cotton/polydimethylsiloxane composite dielectric layer[J]. Journal of Textile Science, 2021, 42(5): 79-83.
[20] 刘鹏飞. 变结构参数下的间隔织物压缩性能表征与建模研究[D]. 上海: 东华大学, 2015: 27-30.
LIU Pengfei. Study on compression property characterization and modeling of spacer fabric with variable structural parameters[D]. Shanghai: Donghua University, 2015:27-30.
[21] 沈瑶. 经编间隔织物压缩性能的研究[D]. 无锡: 江南大学, 2009: 16-18.
SHEN Yao. Study on compression property of warp knitted spacer fabric[D]. Wuxi: Jiangnan University, 2009: 16-18.
[22] 王晓雷, 缪旭红, 孙婉. 针织间隔导电织物的压力电阻传感性能[J]. 丝绸, 2020, 57(4): 17-21.
WANG Xiaolei, MIAO Xuhong, SUN Wan. Pressure resistance sensing performance of knitted spacer conductive fabric[J]. Journal of Silk, 2020, 57(4): 17-21.
[23] 杨婉秋, 刘晓艳, 于伟东. 多层防刺材料中间隔织物的缓冲作用[J]. 纺织学报, 2019, 40(4): 51-54.
YANG Wanqiu, LIU Xiaoyan, YU Weidong. Cushioning Effect of spacer fabric in Multi-layer prick-proof Materials[J]. Journal of Textile Research, 2019, 40(4): 51-54.
[24] 李瑞青, 李思明, 陈天骄, 等. 基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器[J]. 复合材料学报, 2021, 38(7): 2152-2161.
LI Ruiqing, LI Siming, CHEN Tianjiao, et al. Flexible capacitive pressure sensor based on expandable microspheres/polydimethylsiloxane composite dielectric layer[J]. Journal of Composite Materials, 2021, 38(7): 2152-2161.
[1] 韩炜, 邢晓梦, 张海宝, 姜茜, 刘天威, 卢佳浩, 闫志强, 巩继贤, 吴利伟. 基于粒子群算法对纬编针织物Johnson-Champoux-Allard模型参数反分析研究[J]. 纺织学报, 2024, 45(10): 103-112.
[2] 陆彤, 唐虹, 赵敏. 刺绣心电电极设计与性能分析[J]. 纺织学报, 2024, 45(09): 70-77.
[3] 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157.
[4] 史伟民, 李洲, 陆伟健, 屠佳佳, 徐寅哲. 基于改进Yolov5模型的纱筒余纱量检测方法[J]. 纺织学报, 2024, 45(07): 196-203.
[5] 葛美彤, 董智佳, 丛洪莲, 丁玉琴. 凹凸点阵双面织物的结构与湿热管理评价[J]. 纺织学报, 2024, 45(07): 47-54.
[6] 程献伟, 刘亚文, 关晋平, 陈瑞. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(06): 120-126.
[7] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[8] 李久刚, 石玉菲, 刘可帅, 李文斌, 柯贵珍. 石英纱线/石英纤维毡三维织物的设计及其隔热性能[J]. 纺织学报, 2024, 45(06): 53-58.
[9] 权衡, 钱赛龙, 刘诗楠, 邹春梅, 倪丽杰. 非线性阳离子聚氨酯改性有机硅柔软剂的制备及其应用性能[J]. 纺织学报, 2024, 45(05): 121-128.
[10] 胡旭东, 汤炜, 曾志发, 汝欣, 彭来湖, 李建强, 王博平. 基于轻量化卷积神经网络的纬编针织物组织结构分类[J]. 纺织学报, 2024, 45(05): 60-69.
[11] 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84.
[12] 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7.
[13] 齐育宝, 汝欣, 李建强, 周悦欣, 彭来湖. 基于随机共振-反向传播算法的压电选针器渐变失效检测[J]. 纺织学报, 2024, 45(03): 202-208.
[14] 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133.
[15] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!