纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 10-20.doi: 10.13475/j.fzxb.20230804801

• 纤维材料 • 上一篇    下一篇

La3+协同催化芦苇基醋酸纤维素的制备及其机制

包新军1,2,3,4, 王兴1,2, 张卓1,2, 蒋辛伟5, 解开放1,2,3,4, 陈情6, 何斌1,2,3,4, 周衡书1,2,3,4()   

  1. 1.湖南工程学院 智能纺织创新研究院, 湖南 湘潭 411104
    2.湖南省新型纤维面料及加工工程研究中心, 湖南 湘潭 411104
    3.智能纺织加工技术湖南省普通高校重点实验室, 湖南 湘潭 411104
    4.短流程智能纺织湖南省工程研究中心, 湖南 湘潭 411104
    5.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    6.湖南骏泰新材料科技有限责任公司, 湖南 怀化 418005
  • 收稿日期:2023-08-21 修回日期:2024-01-17 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 周衡书(1967—),男,教授,硕士。主要研究方向为功能纺织品。E-mail:280434272@qq.com
  • 作者简介:包新军(1983—),男,副教授,博士。主要研究方向为稀土改性功能纤维材料。
  • 基金资助:
    湖南省重点研发计划项目(2022NK2042);湖南省自然科学基金项目(2024JJ7096);湖南省教育厅创新平台项目(20K037);湖南省教育厅优秀青年基金项目(23B0682);湘潭市科技创新双“50”项目(CG-YB20211002)

Preparation and synergistic mechanism of reed-based cellulose acetate catalyzed by La3+

BAO Xinjun1,2,3,4, WANG Xing1,2, ZHANG Zhuo1,2, JIANG Xinwei5, XIE Kaifang1,2,3,4, CHEN Qing6, HE Bin1,2,3,4, ZHOU Hengshu1,2,3,4()   

  1. 1. Intelligent Textile Institute of Innovation, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
    2. Engineering Technology Research Center of New Fiber Fabric and Processing, Xiangtan, Hunan 411104, China
    3. Key Laboratory of Intelligent Processing Technology, Xiangtan, Hunan 411104, China
    4. Short-flow Intelligent Textile Hunan Engineering Research Center, Xiangtan, Hunan 411104, China
    5. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    6. Hunan Juntai New Material Technology Co., Ltd., Huaihua, Hunan 418005, China
  • Received:2023-08-21 Revised:2024-01-17 Published:2024-11-15 Online:2024-12-30

摘要: 为探究芦苇基醋酸纤维素制备的可行性,在传统乙酰化催化的基础上,以醋酸为溶剂、醋酸酐为酰化剂,并首次以浓硫酸和La3+为协同催化剂,构建芦苇基溶解浆粕乙酰化反应的高效催化体系。借助红外光谱、扫描电镜和X射线衍射技术,系统地研究了醋酸酐用量、乙酰化反应时间、乙酰化反应温度及La3+添加量对乙酰化产物取代度和结晶性能的影响。结果表明:反应时间为2 h,反应温度为70 ℃,芦苇基溶解浆粕、乙酸、乙酸酐的固液比为2∶100∶18时,在活化过程中加入硫酸和硝酸镧混合催化剂,当硝酸镧添加量与芦苇基溶解浆粕质量比为22.5%时,醋酸纤维素的取代度达到了最大值2.85。进一步运用密度泛函理论(DFT)对La3+协同强化催化芦苇基溶解浆粕乙酰化反应机制进行理论分析,计算结果证实随着La3+加入,因其独特的电子结构和强配位能力,La3+和醋酸酐分子相互作用生成中间体络合物[La(Ac2O)2]3+,络合物中的电子密度重新分布,极大降低了硫酸电离出的电子给予体HSO4与之反应生成乙酰基磺酸的能垒,继而乙酰基磺酸与芦苇基溶解浆中的纤维素发生乙酰化反应。

关键词: 芦苇基溶解浆粕, 醋酸纤维素, 乙酰化, 协同催化, 取代度

Abstract:

Objective Aiming at the high value utilization of reed-based pulp, obtained from the rich reed resources in Dongting Lake area, this research explores the feasibility for the preparation of reed-based cellulose acetate under an efficient catalytic system and tests and analyzes the microstructure and performance of the thus-obtained reed-based cellulose acetate. Meanwhile, the co-catalytic mechanism of La3+ in the process of acetylation was studied in detail.

Method The reed-based cellulose acetate was prepared by low temperature acetylation., where acetic acid is used as solvent, acetic anhydride as acylating agent, concentrated sulfuric acid and La3+ as co-catalyst for the first time. The effects of acetic anhydride dosage, acetylation time, acetylation temperature and the addition amount of La3+ on the degree of substitution and crystallinity of the acetylation products were systematically studied. The whiteness and polymerization degree of the prepared reed-based cellulose acetate were evaluated. The degree of substitution, crystallization property, morphology and structure of the thus-obtained sample were scrutinized, measured and analyzed. The density functional theory was used to analyze the synergistic catalytic mechanism of La3+ during the acetylation of dissolved reed pulp.

Results Under the conditions that the reaction time was 2 h, the reaction temperature was 70 ℃, and the solid-liquid ratio of acetic anhydride to acetic anhydride was 2∶100∶18, the corresponding acetylation products showed obvious acetyl functional group characteristic absorption peaks around 1 750, 1 380 and 1 235 cm-1, regardless of whether La3+ was added. However, it is worth noting that when the mass ratio of lanthanum nitrate to reed-based pulp was 22.5%, the acetyl functional group characteristics in the corresponding FT-IR spectrum illustrated obvious blue shift, which was due to the fact that the hydroxyl group in the dissolved pulp was replaced by a larger acetyl group during the acetylation reaction, resulting in breakage of the intermolecular and intramolecular hydrogen bond of the product. The maximum degree of substitution was 2.85, the whiteness of the thus-obtained cellulose acetate was 87.45 and the average degree of polymerization was 171. Scanning electron microscope images of the acetylation products under different conditions showed porous structures. The characteristic (210), (310), (021) and (012) crystal planes representing cellulose acetate showed diffraction peaks of acetylated products after the addition of different amounts of lanthanum nitrate. When the ratio of lanthanum nitrate to reed pulp was 22.5%, the characteristic diffraction peak was the strongest. In addition to the slight increase of grain size corresponding to (021) crystal plane, the grain size corresponding to other crystal planes was decreased significantly, indicating that under the synergistic catalysis of an appropriate amount of La3+, the acetylation reaction of dissolved reed pulp was easier to penetrate into the crystallization zone, so that the hydrogen bond in the fiber chain was continuously opened and then broken. The DFT calculation results supported and confirmed that with the addition of La3+, due to its unique electronic structure and coordination ability, La3+ and acetic anhydride molecules interact to form an intermediate complex [La(Ac2O)2]3+, and the electron density in the complex is redistributed. This greatly reduces the energy barrier for the ionized electron donor HSO4 of sulfuric acid to react with it to form acetyl sulfuric acid, which in turn acetylates with cellulose in the dissolved reed pulp.

Conclusion The reed-based cellulose acetate was successfully prepared by low temperature acetylation by using concentrated sulfuric acid and La3+ as co-catalyst. Density functional theory (DFT) analysis shows that the addition of La3+ can effectively improve the catalytic efficiency of acetylation. The successful preparation of reed-based cellulose acetate will provide a foundation for high-value utilization of natural renewable cellulose resources, which has important academic significance and obvious social and economic value.

Key words: dissolved reed pulp, cellulose acetate, cellulose acetylation, synergistic catalysis, degree of substitution

中图分类号: 

  • TQ353.21

图1

溶解浆粕及乙酰化产物的形貌和结构表征"

图2

不同条件下的乙酰化产物的红外光谱图"

表1

乙酰化反应条件实验"

实验
变量
浆粕
质量/
g
冰醋
酸体
积/mL
醋酸
酐体积/
mL
浓硫
酸质
量/g
硝酸
镧质
量/g
温度/
时间/
h
取代度
酸肝
用量
2 100 9 0.04 0 70 2 2.65±0.061 2
2 100 18 0.04 0 70 2 2.76±0.017 5
2 100 27 0.04 0 70 2 2.63±0.060 8
反应
时间
2 100 18 0.04 0 70 0.5 2.63±0.060 8
2 100 18 0.04 0 70 1 2.71±0.062 6
2 100 18 0.04 0 70 2 2.76±0.017 5
2 100 18 0.04 0 70 3 2.73±0.063 1
反应
温度
2 100 18 0.04 0 50 2 2.65±0.061 2
2 100 18 0.04 0 60 2 2.70±0.062 4
2 100 18 0.04 0 70 2 2.76±0.017 5
2 100 18 0.04 0 80 2 2.72±0.062 8
硝酸镧
用量
2 100 18 0.04 0 70 2 2.76±0.017 5
2 100 18 0.04 0.30 70 2 2.81±0.064 9
2 100 18 0.04 0.45 70 2 2.85±0.065 8
2 100 18 0.04 0.60 70 2 2.80±0.064 7

表2

La3++浓硫酸协同催化与浓硫酸、阳离子和有机酸催化性能比较"

催化剂 时间/h 温度/℃ 溶剂 纤维素源及其用量 醋酸酐体积/mL 催化剂质量/g 取代度 文献
H2SO4 4.0 90 冰醋酸 棉纤维, 2 g 未知 0.01 2.70 [49]
H2SO4 2.5 50 冰醋酸 竹纤维, 5 g 25 0.045 2.80 [51]
H2SO4、I2 6.0 60 冰醋酸 玉米芯半纤维素,1 g 10 0.184、0.05 1.33 [52]
EuCl3 0.67 85~90 冰水 水杨酸, 2 g 5 0.15 0.884 [53]
FeCl3 0.67 50 冰醋酸 微晶纤维素, 0.5 g 5 0.10 2.80 [50]
对甲苯磺酸 1.5 90 冰醋酸 滤纸, 5 g 0 5.0 0.80 [54]
H2SO4、La(NO3)3 2.0 70 冰醋酸 芦苇基纤维素, 2 g 18 0.184、0.45 2.85 本文

图3

单因素平行实验最优化条件下乙酰化产物的SEM照片"

图4

芦苇基溶解浆粕及不同La3+添加量下合成醋酸纤维素的XRD图谱"

表3

添加和未添加La3+对乙酰化产物晶粒尺寸的影响"

硝酸镧
质量分数/%
不同晶面的晶粒尺寸/nm
(210) (310) (021) (012) (221) (030)
0 14.8 19.1 5.7 38.8 10.5 100.0
15 14.8 19.0 8.3 5.8 2.1 1.4
22.5 12.6 13.0 5.8 5.9 1.9 1.3
30 22.0 19.0 13.5 6.3 2.2 5.2

图5

Ac2O和La3+形成络合物的电荷密度变化示意图"

表4

醋酸酐(Ac2O)的Bader电荷分布"

O1 O2 O3 C1 C2 C3 C4 H1 H2 H3 H4
1.027 82 1.091 43 1.083 87 -1.435 94 -1.448 16 0.113 8 0.047 13 -0.079 94 -0.080 18 -0.112 6 -0.034 29

表5

[La(Ac2O)2]3+ Bader电荷分布"

La1 O1 O2 O3 O4 O5 O6 C1 C2
0.657 4 1.01 899 1.12 427 1.15 877 1.02 839 1.15 684 1.13 466 -1.33 257 -1.35 94
C3 C4 C5 C6 C7 C8 H1 H2 H3
0.062 81 0.092 97 -1.33 832 -1.33 777 -1.33 777 0.028 66 -0.188 43 -0.183 9 -0.154 09
H4 H5 H6 H7 H8 H9 H10 H11 H12
-0.182 98 -0.184 3 -0.198 98 -0.204 65 -0.178 74 -0.158 45 -0.165 14 -0.188 08 -0.161 79

图6

La3+协同强化芦苇基溶解浆粕乙酰化反应机制示意图"

[1] 马德志, 于侃超, 崔莹, 等. 扎龙湿地野生芦苇营养成分分析与安全性评价[J]. 广东化工, 2022, 49(24): 165-167.
MA Dezhi, YU Kanchao, CUI Ying, et al. Nutrient composition analysis and safety evaluation of wild phragmites australis in zhalong wetland[J]. Guangdong Chemical Industry, 2022, 49(24): 165-167.
[2] 黄宇辉, 尹志远, 刘明, 等. 聚乙烯醇/三聚氰胺改性脲醛树脂胶黏剂制备芦苇刨花板及性能研究[J]. 林产工业, 2023, 60(5): 1-6.
HUANG Yuhui, YIN Zhiyuan, LIU Ming, et al. Preparation of reed particleboard with polyvinyl alcohol/melamine modified urea formaldehyde and its properties[J]. China Forest Products Industry, 2023, 60(5):1-6.
[3] 杨晓春, 黎重阳, 张玲玲, 等. 响应面法优化绿芦笋罐头的生产工艺[J]. 食品研究与开发, 2023, 44(8): 82-88.
YANG Xiaochun, LI Chongyang, ZHANG Lingling, et al. Processing technology optimization of canned green asparagus by response surface method[J]. Food Research and Development, 2023, 44(8): 82-88.
[4] 刘艳, 高小亮, 钱飞, 等. 芦席斜纹织物的改进设计及其性能分析[J]. 棉纺织技术, 2018, 46(8): 69-71.
LIU Yan, GAO Xiaoliang, QIAN Fei, et al. Improved design and property analyses of interlacing twill fabric[J]. Cotton Textile Technology, 2018, 46(8): 69-71.
[5] 钱旭林, 乔南. 浅析安新县民间艺术-芦苇画[J]. 西部皮革, 2018, 40(7): 28-29.
QIAN Xulin, QIAO Nan. A brief analysis of the folk art of Anxin County-reed painting[J]. West Leather, 2018, 40(7): 28-29.
[6] 张玉杰, 平清伟, 石海强, 等. 杨木与芦苇乙醇-水抽提液中的组分变化规律[J]. 大连工业大学学报, 2020, 39(3): 193-197.
ZHANG Yujie, PING Qingwei, SHI Haiqiang, et al. Changes in the components of ethanol-water extraction solution from aspen and reed[J]. Journal of Dalian Polytechnic University, 2020, 39(3): 193-197.
[7] 焦其帅, 黄永茂, 张志华, 等. 生物质颗粒燃料理化特性研究[J]. 煤炭与化工, 2019, 42(2): 143-146.
JIAO Qishuai, HUANG Yongmao, ZHANG Zhihua, et al. Study on the physical and chemical properties of biomass particles fuel[J]. Coal and Chemical Industry, 2019, 42(2): 143-146.
[8] 潘晶, 张珏茜, 杨墨, 等. 改性生物炭对水中双酚A的吸附性能[J]. 沈阳师范大学学报(自然科学版), 2022, 40(6):520-526.
PAN Jing, ZHANG Juexi, YANG Mo, et al. Adsorption properties of BPA in aqueous solotion by modified biochar[J]. Journal of Shenyang Normal Univer-sity (Nature Science Edition), 2022, 40(6): 520-526.
[9] BOGRES R, AMARAL L F M, BONDANCIA T J, et al. Mechanochemical conversion of cellulose acetate from residues to cellulosic nanospheres for emulsion application[J]. Journal of Environmental Chemical Engineering, 2023, 11(3):1-9.
[10] TU H, ZHU M X, DUAN D, et al. Recent progress in high-strength and robust regenerated cellulose materials[J]. Advanced Materials, 2021, 33(28): 1-8.
[11] 周慧敏, 鲁杰, 程意, 等. 醋酸纤维素的改性及应用研究进展[J]. 林产化学与工业, 2020, 40(4): 1-8.
ZHOU Huimin, LU Jie, CHENG Yi, et al. Research progress on modification and application of cellulose acetate[J]. Chemistry and Industry of Forest Products, 2020, 40(4): 1-8.
[12] BONIFACIO A, BONETTI L, PIANTANIDA E, et al. Plasticizer design strategies enabling advanced applications of cellulose acetate[J]. European Polymer Journal, 2023, 197:1-7.
[13] 马国成, 何圳, 陈少军. 醋酸纤维的降解性研究进展[J]. 中国塑料, 2022, 36(9): 111-121.
doi: 10.19491/j.issn.1001-9278.2022.09.016
MA Guocheng, HE Zhen, CHENG Shaojun. Research progress in degradability of cellulose acetate[J]. China Plastics, 2022, 36(9): 111-121.
doi: 10.19491/j.issn.1001-9278.2022.09.016
[14] 石纯, 李天诚, 杨静, 等. 竹醋酸纤维素膜的制备及其性能研究[J]. 林产化学与工业, 2018, 38(5): 70-76.
SHI Chun, LI Tiancheng, YANG Jing, et al. Preparation and characteration of cellulose acetate films derived from bamboo[J]. Chemistry and Industry of Forest Products, 2018, 38(5): 70-76.
[15] 陆帅羽, 唐静文, 张玥, 等. 醋酸纤维素的制备及其可纺性研究[J]. 合成纤维, 2015, 44(12): 5-9.
LU Shuaiyu, TANG Jingwen, ZHANG Yue, et al. Research on cellulose acetate preparation and its spinnability[J]. Synthetic Fiber in China, 2015, 44(12): 5-9.
[16] 高洁, 汤烈贵. 纤维素科学[M]. 北京: 科学出版社, 1996:66-72.
GAO Jie, TANG Liegui. Cellulose science[M]. Beijing: Science Press, 1996:66-72.
[17] 王小康, 解开放, 周衡书, 等. 醋化级芦苇溶解浆的制备与性能[J]. 纺织学报, 2023, 44(9):52-59.
WANG Xiaokang, XIE Kaifang, ZHOU Hengshu, et al. Preparation and characterization of acetate grade reed dissolving pulp[J]. Journal of Textile Research, 2023, 44(9):52-59.
[18] BAO X J, WANG Z J, XI L J, et al. Separation of Sc2O3 from Banyan obo tailings through an innovative roasting method[J]. Rare Metals, 2022, 41(3): 1071-1076.
[19] 杨志强, 兰石琨, 包新军. 改进的碳铵沉淀法中氧化钇粉体尺寸及形貌的调控研究[J]. 人工晶体学报, 2019, 48(9): 12-17.
YANG Zhiqiang, LAN Shikun, BAO Xinjun. Size and morphology control of Y2O3 powders by improved ammonium bicarbonate precipitation method[J]. Journal of Synthetic Crystals, 2019, 48(9): 12-17.
[20] 包新军, 江长尧, 曾秋蓉, 等. 尺寸形貌可控Y(NH4)(C2O4) 2·H2O和Y2O3的制备及其形成机制[J]. 稀有金属, 2017, 10: 1130-1136.
BAO Xinjun, JIANG Changyao, ZENG Qiurong, et al. Size-and shape-controlled synthesis and formation mechanism of Y(NH4)(C2O4)2·H2O and Y2O3 phases[J]. Chinese Journal of Rare Metals, 2017, 10: 1130-1136.
[21] BAO X J, XIE K F, LUO F X, et al. Study of the thermal stability and decomposition behavior of Lu(NH4)(C2O4)2·2H2O[J]. Micro & Nano Letters, 2022, 17: 227-232.
[22] BAO X J, ZHANG Z J, LUO T Z, et al. Conversion of cerium and lanthanum from rare earth polishing powder wastes to CeO2 and La0.6Ca0.4CoO3[J]. Hydrometallurgy, 2020, 193: 105317.
[23] BAO X J, XIE K F, ZHANG Z J, et al. NiFe-LDHs@MnO2 heterostructure as a bifunctional electrocatalyst for oxygen-involved reactions and Zn-air batteries[J]. Ionics, 2022, 28(3): 1273-1283.
[24] ZHAO Q Y, BAO X J, MENG L S, et al. Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium-sulfur batteries with enhanced kinetics and cyclability[J]. Journal of Colloid and Interface Science, 2023, 644: 546-555.
doi: 10.1016/j.jcis.2023.03.169 pmid: 37012112
[25] WANG D, LIU J, BAO X J, et al. Macro/mesoporous carbon/defective TiO2 composite as a functional host for lithium-sulfur batteries[J]. ACS Applied Energy Materials 2022, 5(2): 2573-2579.
[26] HU F, BAO X J, HE M R, et al. Defect-rich graphene skin modified carbon felt as a highly enhanced electrode for vanadium redox flow batteries[J]. Journal of Power Sources, 2023, 556.
[27] FEI P F, LIAO L, CHENG B W, et al. Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application[J]. Analytical Methods, 2017, 9(43): 6194-6201.
[28] El Nemr A, RAGAB S, El Sikaily A, et al. Synthesis of cellulose triacetate from cotton cellulose by using NIS as a catalyst under mild reaction conditions[J]. Carbohydrate Polymers, 2015, 130: 41-48.
doi: 10.1016/j.carbpol.2015.04.065 pmid: 26076599
[29] QIU H B, GAO L, QIAO H C, et al. Nanocrystalline zirconia powder processing through innovative wet-chemical methods[J]. Nanostructures Materials, 2006, 6(1):373-376.
[30] KLUG H, ALEXANDER L. X-ray diffraction procedure for polycrystalline and amorphous materials[M]. New York: John Wiley and Sons, 1974:634.
[31] MEI J, OU Y F, CHEN J N. Studies on polymeriza-tion and the properties of cellulose acetate at high temperature[J]. Journal of Cellulose Science and Technology, 2000, 8(1):9-16.
[32] MENG Q L, LI Y C. Homogeneous synthesis of cellulose acetate[J]. Chemical Research & Application, 2004, 16(2):287-2 89.
[33] LIU J L, XIAO J X, WANG Z Y, et al. Structural and electronic engineering of Ir-doped Ni-(Oxy)hydroxide nanosheets for enhanced oxygen evolution activity[J]. ACS Catalisis, 2021, 11(9): 5386-5395.
[34] BECHTHOLD P, JUAN J, JUAN A, et al. The adsorption of ethyl formate on CaO: a DFT study[J]. Journal of Physics and Chemistry of Solids, 2024, 185: 1-8.
[35] VANDERBILT D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.
[36] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
[37] PACK J D, MONKHORST H J. Special points for brillouinzone integrations[J]. Physical Review B, 1977, 16(4): 1748-1749.
[38] 贾冉冉, 刘虎, 佘洁, 等. 不同形貌固体酸的纤维素乙酰化催化性能研究[J]. 纤维素科学与技术, 2022, 30(1): 71-80.
JIA Ranran, LIU Hu, SHE Jie, et al. Investigation on catalytic performance of cellulose acetylation of solid acids with different morphologies[J]. Journal of Cellulose Science and Technology, 2022, 30(1): 71-80.
[39] CHEN J, XU J, WANG K, et al. Cellulose acetate fibers prepared from different raw materials with rapid synthesis method[J]. Carbohydrate Polymers, 2016, 137:685-692.
doi: S0144-8617(15)01124-8 pmid: 26686180
[40] WATANABE A, MORITA S. Drying process of microcrystalline cellulose studied by attenuated total reflection IR spectroscopy with two-dimensional correlation spectroscopy and principal component analysis[J]. Journal of Molecular Structure-Theochem, 2006, 799: 102-110.
[41] 吴桂骏, 覃小红. 烟梗浆亚微米醋酸纤维的制备及其性能[J]. 纺织学报, 2019, 40(12): 1-8.
WU Jiajun, QIN Xiaohong. Preparation and characteration of cellulose acetate sub-micro fiber from burley tobacco stalk pulp[J]. Journal of Textile Research, 2019, 40(12): 1-8.
doi: 10.13475/j.fzxb.20181202008
[42] CELEBIOGLU A, DEMIRCI S, UYAR T. Cyclodextrin-grafted electrospun cellulose acetate nanofibers via "Click" reaction for removal of phenanthrene[J]. Applied Surface Science, 2014, 305:81-588.
[43] MICHAEL S, MICHEL B, HERANT K, et al. Application of chemical and thermal analysis methods for studying cellulose ester plastics[J]. Accounts of Chemical Research, 2010, 43(6):888-896.
doi: 10.1021/ar1000132 pmid: 20455567
[44] SUN X F, SUN R C, SUN J X. Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials[J]. Bioresource Technology, 2004, 95(3):343-350.
pmid: 15288278
[45] ALI S, KHATRI Z, OH K W, et al. Zein/cellulose acetate hybrid nanofibers: electrospinning and characterization[J]. Macromolecular Research, 2014, 22(9):971-977.
[46] SUN R C, SUN X F. Structural and thermal characterization of acety-lated rice, wheat, and barley straw s and poplar wood fiber[J]. Industrial Crops and Products, 2002, 16(3):225-235.
[47] SIQUEIRA G, BRAS J, DUFRESNE A. Cellulosic bionanocomposites: a review of preparation, properties and applications[J]. Polymers, 2010, 2(4):728-765.
[48] TSERKI V, ZAIFEIROPOUIOS N E, SIMON F, et al. A study of the effect of acetylation and propionylation surface treatment on natural fibers[J]. Composites: Part A, 2005, 36(8):1110-1118.
[49] 傅七兰, 牛敏, 谢拥群. 纤维素乙酰化改性研究[J]. 福建农林大学学报, 2013, 33(1): 87-92.
FU Qilan, NIU Min, XIE Yongqun. Modification of cellulose by acetylation[J]. Journal of Fujian College of Forestry, 2013, 33(1): 87-92.
[50] 高立斌, 张素英, 史晟, 等. 醋酸纤维素的制备及其结构与性能[J]. 应用化工, 2020, 49(1): 55-59.
GAO Libin, ZHANG Suying, SHI Sheng, et al. Synthesis, struture and properties of cellulose acetate[J]. Applied Chemical Industry, 2020, 49(1): 55-59.
[51] 蔡杰, 余雁, 熊汉国, 等. 竹纤维乙酰化改性制备醋酸纤维素[J]. 林业科技开发, 2013, 27(5):80-85.
CAI Jie, YU Yan, XIONG Hanguo, et al. Preparation of cellulose acetate by acetylation of bamboo cellulose[J]. Journal of Forestry Engineering, 2013, 27(5):80-85.
[52] 彭俏, 赵四九, 范国枝, 等. 玉米芯半纤维素提取、乙酰化改性及结构表征[J]. 食品工业科技, 2022, 43(11): 45-51.
PENG Qiao, ZHAO Sijiu, FAN Guozhi, et al. Extraction, acetylation modification and structure characterization of hemicelluloses from corncob[J]. Science and Technology of Food Industry, 2022, 43(11): 45-51.
[53] 赵伦, 唐栋, 王晓菊, 等. 稀土氯化物催化合成乙酰水杨酸[J]. 长春师范大学学报(自然科学版), 2008, 27(6): 46-48.
ZHAO Lun, TANG Dong, WANG Xiaoju, et al. Synthesis of acetylsalicylic acid with rare earth chloride catalyst[J]. Journal of Changchun Normal Univer-sity(Natural Science), 2008, 27(6): 46-48.
[54] 刘治梅, 具本植, 张淑芬. 有机酸催化-锅法制备乙酰化纤维素纳米晶[J]. 化工新型材料, 2020, 48(5): 172-177.
LIU Zhimei, JU Benzhi, ZHANG Shufen. One-pot preparation of CNC-Ac by organic acid catalysis[J]. New Chemical Materials, 2020, 48(5): 172-177.
[55] 刘景宏, 谢拥群, 魏起华. 用XRD法研究ULDM纤维素结晶区的热稳定性[J]. 福建农林大学学报, 2013, 33(4): 363-366.
LIU Jinghong, XIE Yongqun, WEI Qihua. Study on the thermal stability of cellulose crystalline regin of ULDM by X-ray diffraction[J]. Journal of Fujian College of Forestry, 2013, 33(4): 363-366.
[56] SEGAL L, CREELY J J, MARTION A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
[57] 何建新, 唐予远, 王善元. 醋酸纤维素的结晶结构与热性能[J]. 纺织学报, 2008, 29(10): 12-16.
HE Jianxin, TANG Yuyuan, WANG Shanyuan. Crystalline structure and thermal property of cellulose acetate[J]. Journal of Textile Research, 2008, 29(10): 12-16.
[1] 彭博, 吴宇洁, 张悦, 李妙龙, 孟祥, 李伟, 鲁育豪. 低取代度淀粉烷基羧酸单酯的烷基链长对涤纶上浆性能的影响[J]. 纺织学报, 2024, 45(10): 122-127.
[2] 张悦, 李伟, 吴宇洁, 程雪冬, 孟祥. 丙酸酯化-叔胺化淀粉浆料的制备及其黏附性能[J]. 纺织学报, 2024, 45(01): 146-151.
[3] 谢婉婷, 刘其海, 贾振宇, 朱小花, 王荣辉. 超吸水改性棉纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 48-54.
[4] 刘艳春, 白刚. 小檗碱在聚丙烯腈/醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[5] 吴佳骏, 覃小红. 烟梗浆亚微米醋酸纤维的制备及其性能[J]. 纺织学报, 2019, 40(12): 1-8.
[6] 郭淑华 王建坤 钱晓明. 微波辅助羧甲基玉米淀粉的制备及其上浆性能[J]. 纺织学报, 2018, 39(12): 59-66.
[7] 张朝辉 徐珍珍 李伟. 季铵阳离子醚化-十二烯基琥珀酸酯化淀粉浆料的黏附性能[J]. 纺织学报, 2018, 39(12): 67-71.
[8] 刘建勇 吴胜争 赵笑康. 生物酶协同催化体系及其对羊毛纤维的作用机制[J]. 纺织学报, 2018, 39(01): 71-78.
[9] 李伟 刘新华 徐珍珍 李长龙 王旭 魏安方 张朝辉. 电中性双重醚化淀粉浆料的制备及其浆膜性能[J]. 纺织学报, 2017, 38(12): 77-82.
[10] 张朝辉 徐珍珍 刘新华 李伟. 乙酰乙酸酯化淀粉浆料的制备及其性能[J]. 纺织学报, 2017, 38(11): 68-72.
[11] 张朝辉 徐珍珍 刘新华 李伟. 磺化改性辛烯基琥珀酸淀粉酯浆料的制备及其性能[J]. 纺织学报, 2017, 38(01): 78-82.
[12] 么丹阳 巫晓华 毛雪峰 周邓飞 蒋佳莉 王秀华. 银纳米颗粒/二氧化钛/醋酸纤维素复合纤维的制备及其性能[J]. 纺织学报, 2016, 37(4): 15-20.
[13] 叶晋浦 朱庆松 李晓俊 肖长发. 二醋酸纤维素与増塑剂熔融体系的制备与表征[J]. 纺织学报, 2016, 37(09): 6-11.
[14] 于勤 王强 范雪荣. 二醋酸纤维素纤维纺丝溶液的挤出胀大行为[J]. 纺织学报, 2015, 36(04): 7-10.
[15] 秦益民 莫岚 朱长俊 胡贤志 申胜标 陈凯. 乙酰化处理对含银甲壳胺纤维性能的影响[J]. 纺织学报, 2015, 36(03): 11-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!