纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 37-45.doi: 10.13475/j.fzxb.20240101001

• 纤维材料 • 上一篇    下一篇

基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能

李韩, 王海霞(), 张旭, 刘丽萍, 刘小琨   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2024-01-08 修回日期:2024-04-02 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 王海霞(1975—),女,副教授,博士。主要研究方向为功能纺织品及服装材料。E-mail:hxwang@tiangong.edu.cn
  • 作者简介:李韩(1999—),男,硕士生。主要研究方向为功能纤维及织物。
  • 基金资助:
    国家自然科学基金项目(21875163);国家自然科学基金项目(21404080)

Preparation and thermal management performance of thermoregulated fabric based on polyvinyl butyral/polyethylene glycol coaxial nanofiber membrane

LI Han, WANG Haixia(), ZHANG Xu, LIU Liping, LIU Xiaokun   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2024-01-08 Revised:2024-04-02 Published:2024-11-15 Online:2024-12-30

摘要:

利用同轴静电纺丝法制备了以聚乙烯醇缩丁醛(PVB)为皮层、聚乙二醇2000(PEG2000)为芯层的复合纳米纤维膜(PVB/PEG),同时以此设计了PVB/PEG厚度不同的三明治式相变储热复合织物,借助扫描电子显微镜、透射电子显微镜、差示扫描量热仪、热红外成像仪等测试了PVB/PEG纳米纤维及其复合织物的形状稳定性、相变焓值、储放热性能以及透气透湿性能。PVB/PEG纤维展现了连续的皮芯同轴复合结构,相变储热值为27~47 J/g,在65 ℃保持形状稳定确保了PEG固液相转变无渗漏。单层、双层和三层复合织物在热对流和热传导环境下的热缓冲时间分别为18、36、60 s与18、32、54 s,并且在100次热循环后织物热调节能力不变,展示了优异的储放热性能和热管理能力。同时,复合织物的透气透湿性随PVB/PEG纳米纤维膜负载层数的增加而降低,但织物弹性模量增加,表明基于PVB/PEG同轴纳米纤维膜制备的复合织物可作为热舒适服用材料在个人热管理调节方面得到应用。

关键词: 相变材料, 热能储存, 静电纺丝, 同轴结构, 复合织物, 透气性, 透湿性, 聚丙烯非织造布

Abstract:

Objective In order to enhance the thermal comfort properties of textiles, this study employs the coaxial electrospinning method to fabricate a composite nanofibrous membrane with polyvinyl alcohol formaldehyde (PVB) as the skin layer and PEG2000 as the core layer (PVB/PEG). Simultaneously, a sandwiched phase change heat storage composite fabric is designed using the as-prepared PVB/PEG nanofibrous membranes. The fabric exhibits excellent heat storage and release properties and offers an effective thermoregulated effect.

Method Coaxial electrospinning technology was employed to fabricate PVB/PEG nanofibrous membranes with various fiber skin/core ratios. Using nanofibers with fiber skin/core (2∶1) ratio as the sandwiched layers, single-layer (T1), double-layer (T2), and triple-layer (T3) PVB/PEG composite fabrics were prepared. Phase change enthalpy, thermal storage performance, and fabric's thermal management ability were tested by SEM, TEM, DSC, thermal infrared imaging, and thermocouples.

Results The PVB/PEG nanofibers had a continuous core-shell structure with diameters ranging from 244 to 372 nm, and phase change enthalpy is between 27-47 J/g. The phase change enthalpy of T1, T2, and T3 fabrics ranged from 6-14 J/g and were closely related to the PEG contents in the nanofibers. The fabrics maintained good shape stability at 65 ℃ and thermal energy storage and temperature regulation capabilities keep stable after 100 thermal cycles, demonstrating the composite fabric's repeatability. The 50 ℃ thermal buffering platform demonstrated the fabric's good temperature-regulating effect, and the thermal buffering time depends on the amount of nanofiber membrane layers.

Conclusion The composite fabrics ensure good thermal buffering effects, and they reduce the fabric's breathability and moisture permeability at loading triple-layered nanofibrous membranes. Achieving balance of thermal comfort and fabric properties is of importance in obtaining the satisfied nanofiber diameter, phase change material content, and fabric thickness. This opens a promising application in personal thermal management textiles.

Key words: phase change material, thermal energy storage, coaxial electrostatic spinning, composite fabric, air permeability, moisture permeability, polyprophylene nonwoven fabric

中图分类号: 

  • TS179

图1

PVB/PEG同轴纳米纤维及复合织物制备示意图"

图2

不同皮芯比的PVB/PEG纳米纤维SEM和TEM照片"

图3

PVB/PEG纳米纤维在不同皮芯比及洗涤时间和不同厚度织物的DSC曲线"

表1

不同皮芯比时PVB/PEG同轴纳米纤维的DSC数据"

样品 Tmo/℃ Tmp/℃ Tme/℃ ΔHm/(J·g-1) Tco/℃ Tcp/℃ Tce/℃ ΔHc/(J·g-1)
PEG2000 52.1 59.3 63.7 116.1 37.4 31.5 27.1 114.0
VSVC=1∶1 51.5 60.2 64.2 47.1 36.1 31.4 26.6 43.7
VSVC=2∶1 51.2 58.5 62.3 35.1 34.4 30.5 26.0 30.8
VSVC=3∶1 52.2 58.8 62.9 27.6 35.8 30.8 26.1 23.8
VSVC=4∶1 51.8 55.0 58.0 3.2 24.8 21.6 16.8 1.5
洗涤30 min
(VSVC为2∶1)
50.6 57.6 61.2 34.9 32.8 29.2 25.6 30.7
洗涤60 min
(VSVC为2∶1)
50.3 57.8 61.3 34.8 33.0 28.5 23.7 30.7

表2

不同厚度织物的DSC数据"

样品 Tmo /℃ Tmp/℃ Tme/℃ ΔHm/(J·g-1) Tco/℃ Tcp/℃ Tce/℃ ΔHc/(J·g-1)
PVB/PEG(VSVC为2∶1)
纳米纤维
51.2 58.5 62.3 35.1 34.4 30.5 26.0 30.8
T1 50.4 57.4 62.3 6.2 38.4 31.1 26.3 5.8
T2 54.6 63.6 68.9 11.7 36.4 29.0 23.2 11.1
T3 54.3 63.8 69.2 14.0 37.0 29.1 23.1 13.4

图4

PEG2000、纳米纤维膜(VS∶VC=2∶1)及T1、T2、T3织物的形状稳定性"

图5

不同环境下T1、T2、T3织物的热存储与热释放性能"

图6

不同层数织物100次储热与放热循环测试结果"

图7

复合织物的热红外成像图"

表3

三明治复合织物的透气性和透湿性"

样品 透气率/
(mm·s-1)
透湿率/
(g·m-2 ·h-1)
空白布样 2 100±10 353±0.1
PVB/PEG纳米纤维
(VSVC为2∶1)
28±0.5 194±0.1
T1 26±0.5 181±0.1
T2 17±0.5 162±0.1
T3 14±0.5 127±0.1

图8

织物力学性能"

[1] SONG S, ZHAO T, QIU F, et al. Natural microtubule encapsulated phase change material with high thermal energy storage capacity[J]. Energy, 2019, 172: 1144-1150.
[2] LIANG J, ZHANG X, JI J. Hygroscopic phase change composite material: a review[J]. Journal of Energy Storage, DOI:10.1016/j.est.2021.102395.
[3] MONDAL S. Phase change materials for smart textiles: an overview[J]. Applied Thermal Engineering, 2008, 28(11/12): 1536-1550.
[4] 杜吉辉, 苏云, 刘广菊, 等. 智能防寒手套温控系统设计及热舒适性研究[J]. 纺织学报, 2023, 44(4): 172-178.
DU Jihui, SU Yun, LIU Guangju, et al. Research and design of temperature-control intelligent thermal gloves with wearing comfort[J]. Journal of Textile Research, 2023, 44(4): 172-178.
[5] ESMAEILZADEH Z, REZAEI B, MOUSAVI SHOUSHTARI A, et al. Enhancing the thermal characteristics of shape-stabilized phase change nanocomposite nanofibers by incorporation of multiwalled carbon nanotubes within the nanofibrous structure[J]. Advances in Polymer Technology, 2018, 37(1): 185-193.
[6] LU P, CHEN W, ZHU M, et al. Embedding lauric acid into polystyrene nanofibers to make high-capacity membranes for efficient thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7249-7259.
[7] REZAEI B, GHANI M, ASKARI M, et al. Fabrication of thermal intelligent core/shell nanofibers by the solution coaxial electrospinning process[J]. Advances in Polymer Technology, 2014. DOI:10.1002/adv.21534.
[8] WANG N, CHEN H, LIN L, et al. Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning[J]. Macromolecular Rapid Communications, 2010, 31(18): 1622-1627.
doi: 10.1002/marc.201000185 pmid: 21567573
[9] WU J, WANG M, DONG L, et al. Ultraflexible, breathable, and form-stable phase change fibrous membranes by green electrospinning for personal thermal management[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7873-7882.
[10] VAN Do C, NGUYEN T T T, PARK J S. Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics[J]. Solar Energy Materials and Solar Cells, 2012, 104: 131-139.
[11] FENG W, ZHANG Y S, SHAO Y W, et al. Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles[J]. European Polymer Journal, 2021. DOI:10.1016/j.eurpolymj.2020.110245.
[12] LU Y, XIAO X, FU J, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning[J]. Chemical Engineering Journal, 2019, 355: 532-539.
[13] LI S, WANG H, MAO H, et al. Light-to-thermal conversion and thermoregulated capability of coaxial fibers with a combined influence from comb-like polymeric phase change material and carbon nano-tube[J]. ACS Appl Mater Interfaces, 2019, 11(15): 14150-14158.
[14] LI S Q, WANG H X, MAO H Q, et al. Enhanced thermal management performance of comb-like polymer/boron nitride composite phase change materials for the thermoregulated fabric application[J]. Journal of Energy Storage, 2021. DOI:10.1016/j.est.2021.102826.
[15] 张晋, 张林军, 解云川, 等. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(7): 26-32.
ZHANG Jin, ZHANG Linjun, XIE Yunchuan, et al. Preparation and performance of poly( vinylidene fluoride-trifluoroethylene) piezoelectric modified fiber membrane for long-lasting protective masks[J]. Journal of Textile Research, 2023, 44(7): 26-32.
[16] 葛铖, 郑元生, 刘凯, 等. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(3): 36-41.
GE Cheng, ZHENG Yuansheng, LIU Kai, et al. Influence of voltage on forming process of electrospinning beaded fiber[J]. Journal of Textile Research, 2023, 44(3): 36-41.
[17] 孟鑫, 朱淑芳, 徐英俊, 等. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(9):20-26.
MENG Xin, ZHU Shufang, XU Yingjun, et al. In situ electrospinning recycled polyethylene terephthalate for paper documents conservation[J]. Journal of Textile Research, 2023, 44(9):20-26.
[18] JI R, ZHANG Q, ZHOU F, et al. Electrospinning fabricated novel poly (ethylene glycol)/graphene oxide composite phase-change nano-fibers with good shape stability for thermal regulation[J]. Journal of Energy Storage, 2021. DOI:10.1016/j.est.2021.102687.
[19] LI S Q, WANG H X, LIU L T, et al. On the crystallization behavior of a poly(stearyl methacrylate) comb-like polymer inside a nanoscale environment[J]. Crystengcomm, 2018, 20(45): 7348-7356.
[20] 王硕硕. 芯鞘结构智能调温纳米纤维的制备及其性能研究[D]. 杭州: 浙江理工大学, 2022:1-50.
WANG Shuoshuo. Preparation and performance investigation of core-sheath structure intelligent thermoregulating nanofibers[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:1-50.
[21] 张锟, 张顺花. 相变调温纤维的制备及其调温性能[J]. 合成纤维, 2022, 51(9): 16-21.
ZHANG Kun, ZHANG Shunhua. Preparation of phase change temperature regulating fiber and its temperature regulating performance[J]. Synthetic Fiber in China, 2022, 51(9): 16-21.
[22] 王青弘, 王迎, 郝新敏, 等. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(6): 144-151.
WANG Qinghong, WANG Ying, HAO Xinmin, et al. Processing optimization of composite fabrics deposited with electrospinning polyamide nano-fibers[J]. Journal of Textile Research, 2023, 44(6): 144-151.
[23] 朱晓荣, 向攸慧, 何佳臻, 等. 低辐射热条件下附加相变材料织物的蓄放热双重特性[J]. 纺织学报, 2023, 44(6): 152-160.
ZHU Xiaorong, XIANG Youhui, HE Jiazhen, et al. Thermal storage and discharge performance of fabrics with phase change material under low-level radiant heat exposure[J]. Journal of Textile Research, 2023, 44(6): 152-160.
[24] 柳敦雷, 陆佳颖, 薛甜甜, 等. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(7): 18-25.
LIU Dunlei, LU Jiaying, XUE Tiantian. Preparation and properties of superhydrophobic thermal insulating polyester nanofiber / silica aerogel composite mem-branes[J]. Journal of Textile Research, 2023, 44(7): 18-25.
[1] 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8.
[2] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[3] 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32.
[4] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[5] 刘健, 王程皓, 董守骏, 刘泳汝. 半封闭自由表面式静电纺丝喷头设计与优化[J]. 纺织学报, 2024, 45(11): 215-225.
[6] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[7] 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234.
[8] 刘健, 董守骏, 王程皓, 刘泳汝, 潘山山, 尹兆松. 花瓣状多尖端静电纺丝喷头的电场模拟及优化[J]. 纺织学报, 2024, 45(10): 191-199.
[9] 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207.
[10] 刘文静, 张欣睿, 赵晓曼, 洪剑寒, 王鸿博, 韩潇. 相变材料微胶囊的研究进展[J]. 纺织学报, 2024, 45(09): 235-243.
[11] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
[12] 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41.
[13] 张琦, 左露娇, 屠佳妮, 聂美婷. 经编贾卡鞋面材料透气性的数值模拟[J]. 纺织学报, 2024, 45(09): 78-83.
[14] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[15] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!