纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 65-72.doi: 10.13475/j.fzxb.20230301101

• 纺织工程 • 上一篇    下一篇

基于分形与三维编织理论的棉纤维集合体梳理过程有限元建模与仿真

朱蕾1, 李勇2, 陈晓川1(), 汪军3   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.塔里木大学 机械电气化工程学院, 新疆 阿拉尔 843300
    3.东华大学 纺织学院, 上海 201620
  • 收稿日期:2023-04-01 修回日期:2024-08-09 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 陈晓川(1970—),男,教授,博士。主要研究方向为棉花加工的建模仿真。E-mail:xcchen@dhu.edu.cn
  • 作者简介:朱蕾(1997—),女,学士。主要研究方向为静力学与动力学建模与仿真。
  • 基金资助:
    新疆兵团财政科技计划资助项目(2023CB009-06)

Finite element modeling and simulation of cotton fiber assembly carding process based on 3-D braided and fractal theory

ZHU Lei1, LI Yong2, CHEN Xiaochuan1(), WANG Jun3   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. College of Mechanical and Electronic Engineering, Tarim University, Alar, Xinjiang 843300, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2023-04-01 Revised:2024-08-09 Published:2024-11-15 Online:2024-12-30

摘要:

为提高棉花生条的质量,对梳理过程中棉纤维束的受力情况进行深入分析。基于分形理论建立棉纤维单元,参考三维四向编织结构的内部单胞模型,将分形棉纤维单元按照模型内部的纱线排列方式进行分布,建立棉纤维集合体的三维模型。利用该模型进行棉纤维集合体梳理过程的分析,借助ANSYS有限元软件进行模拟,研究了棉纤维所受梳理力及棉纤维应力的变化情况,梳理力仿真值与实验值的相对误差为11.414%,模型具有一定的合理性;通过MatLab软件运用插值方法,分析回潮率变化对梳理过程的影响,得出了不同回潮率下棉纤维表面摩擦因数值,根据仿真结果可知,随着回潮率升高,梳理力先增大后减小,当回潮率为6.5%时,梳理力更大,梳理效果最好。

关键词: 棉纤维集合体, 梳理过程, 有限元模型, 棉条质量, 梳理力, 回潮率

Abstract:

Objective Carding is the core step of cotton carding process. Its principle is to separate the fiber bundles in cotton roll into a single fiber by means of needle surface movement. In order to achieve the carding effect and prevent cotton fiber from being damaged due to excessive force at the same time, it is essential to control the carding force of cotton fiber within a reasonable range. To study the stress of cotton fiber assembly in carding process and improve the quality of cotton sliver, a new model of cotton fiber assembly was built.

Method The cotton fiber units were established based on the fractal theory, combined with the modeling idea of three-dimensional braided composite materials. The fractal cotton fiber units were arranged according to the fiber distribution in the internal single unicellular structure of three-dimensional four-way braided composite. The model was applied to simulate the carding process of cotton fiber assembly. The stress and strain variation of cotton fiber was studied by finite element method, the change of carding force over time was analyzed.

Results The carding process of cotton fiber under the fixed moisture regain was simulated by using finite element software. The cotton fiber was in the working area between cylinder and plate of the carding machine. In this process, cotton fiber was held by the needle teeth of cylinder and sorted by the needle of plate. The carding force of cotton fiber assembly, the stress and strain variation of cotton fiber over time were studied. Stress relaxation parameters shows that the stress and strain of cotton fiber first increases and then decreases as time goes on. It can be seen from assembly diagram that the stress of cotton fiber mostly occurs in the part directly in contact with the needle of plate and the part held by the needle teeth of cylinder. The effect of cotton fiber moisture regain on carding process was analyzed. The simulation parameters of cotton fiber under different moisture regain conditions were determined. The change of moisture regain will cause the change of friction coefficient of cotton fiber surface, and then affect the carding force. On the basis of the existing friction coefficient values of cotton fiber surface, the interpolation polynomial of friction coefficient and moisture regain was determined by method of undetermined coefficients. The friction coefficient values of cotton fiber under different moisture regain conditions were obtained. With the rise of moisture regain, static friction coefficient between cotton fiber and metal decreases, while dynamic friction coefficient increases. Both static friction coefficient and dynamic friction coefficient between cotton fibers increase. The stress of cotton fiber and the carding force on cotton fiber assembly increase first and then decrease with the rise of moisture regain.

Conclusion The simulation results of carding force are in agreement with the experimental results, indicating that the model of cotton fiber assembly is reasonable. As moisture regain increases, both the stress of cotton fiber and the carding force of cotton fiber assembly generally increases first and then decreases. According to the stress cotton fiber assembly under different moisture regain conditions, when the moisture regain is 6.5% and 8.5%, the stresses in both conditions are not very different and are relatively large. But the carding force is greater when the moisture regain is 6.5%, in this condition the carding effect is the best. The finite element method can better analyze the process of cotton carding, provide reference for the parameter setting of each part of the carding machine, and improve the carding efficiency and quality.

Key words: cotton fiber assembly, carding process, finite element model, sliver quality, carding force, moisture regain

中图分类号: 

  • TS11

表1

分形棉纤维单元的IFS变换"

i 俯视图 主视图
ωi ωi
1 x'=x+1.30 y'=y+0.75 x'=x+1.30 y'=2y+1.50
2 x'=x-1.30 y'=y+0.75 x'=x-1.30 y'=2y+1.50
3 x'=x y'=y-1.50 x'=x y'=2y

表2

分形棉纤维单元的IFS码"

i 俯视图 主视图
ai bi ci di ei fi ai bi ci di ei fi
1 1 0 0 1 1.30 0.75 1 0 0 2 1.30 0
2 1 0 0 1 -1.30 0.75 1 0 0 2 -1.30 0
3 1 0 0 1 0 -1.50 1 0 0 2 0 0

图1

分形棉纤维不同视图变换过程"

图2

分形棉纤维单元模型"

图3

三维四向编织复合材料的内部单胞结构"

图4

基于分形与三维编织理论的棉纤维集合体实体模型"

图5

不同时刻棉纤维集合体应力-应变云图"

表3

不同时刻棉纤维集合体应力与应变情况"

时间/s 棉纤维应力/MPa 棉纤维应变/%
8.55×10-5 0~60.471 0~3.794
6.84×10-4 0.184~2 176 0~96.091
8.55×10-4 0.305~1 199.800 0~53.589

表4

不同时刻梳理力变化情况"

时间/s 梳理力/N 时间/s 梳理力/N
1.18×10-38 0 4.70×10-4 0.272 36
4.28×10-5 0 5.13×10-4 0.290 47
8.55×10-5 0 5.56×10-4 0.267 17
1.28×10-4 0.140 72 5.99×10-4 0.215 45
1.71×10-4 0.291 39 6.41×10-4 0.297 43
2.14×10-4 0.120 31 6.84×10-4 0.270 38
2.57×10-4 0.157 69 7.27×10-4 0.344 44
2.99×10-4 0.150 29 7.70×10-4 0.166 59
3.42×10-4 0.199 98 8.12×10-4 0.696 19
3.85×10-4 0.178 00 8.55×10-4 0.661 46
4.28×10-4 0.225 62

表5

不同回潮率下棉纤维应力松弛参数"

回潮率/
%
E1/
(cN·
dtex-1)
E2/
(cN·
dtex-1)
η1/
(cN·s·
dtex-1)
η2/
(cN·s·
dtex-1)
5.5 158.295 27.037 681.715 19 880.471
6.5 164.095 25.883 691.573 29 091.795
8.5 159.873 25.439 671.215 27 103.253
10 150.915 24.346 608.535 21 348.383

表6

不同回潮率条件下棉纤维的黏弹性参数"

回潮率/% 松弛时间/s G0/(cN·dtex-1) β/(s-1)
5.5 3.676 13.518 0.272 1
6.5 3.639 12.941 0.274 8
8.5 3.620 12.719 0.276 2
10 3.470 12.173 0.288 2

表7

回潮率对棉纤维摩擦因数的影响"

回潮率/
%
纤维与金属之间 纤维与纤维之间
μs μd μs μd
3.98 0.282 3 0.245 3 0.307 3 0.263 5
7.23 0.297 5 0.262 5 0.315 3 0.276 4
8.97 0.284 2 0.275 3 0.314 2 0.282 1
12.57 0.294 2 0.286 3 0.303 1 0.284 2
16.39 0.325 4 0.336 4 0.354 2 0.325 3

表8

回潮率对棉纤维摩擦因数的影响"

回潮率/
%
纤维与金属之间 纤维与纤维之间
μs μd μs μd
5.5 0.306 6 0.246 3 0.308 8 0.267 0
6.5 0.303 4 0.255 4 0.313 1 0.272 5
8.5 0.287 0 0.272 6 0.315 4 0.281 1
10.0 0.281 5 0.279 2 0.310 1 0.283 0

图6

不同回潮率下棉纤维集合体应力-应变云图"

图7

不同回潮率下棉纤维集合体应力变化情况"

图8

不同回潮率下梳理力随时间变化情况"

[1] 费青. 棉束梳理力测定在棉纺中的应用[J]. 纺织科技进展, 2009(1):1-6.
FEI Qing. Applicatin of determination of cotton bundle carding force in cotton spinning[J]. Progress in Textile Science and Technology, 2009(1): 1-6.
[2] 马亮, 王新厚, 郁崇文, 等. 纤维束梳理力动态检测装置[J]. 实验室研究与探索, 2009, 28(3): 39-41.
MA Liang, WANG Xinhou, YU Chongwen, et al. Dynamic testing device for fiber bundle carding force[J]. Laboratory Research and Exploration, 2009, 28(3): 39-41.
[3] SENGUPTA A K, VIJAYARAGHAVAN N, SINGH A. Studies on carding force between cylinder and flats in a card: part I-effect of machine variables on carding force[J]. Indian Journal of Fibre & Textile Research, 1983, 8(3):59-63.
[4] SENGUPTA A K, VIJAYARAGHAVAN N, SINGH A. Studies on carding force between cylinder and flats in a card: part II: effect of fibre and process factors[J]. Indian Journal of Fibre & Textile Research, 1983, 8(3):64-67.
[5] 胡文. 基于分形理论的锯齿轧花机中棉朵模型的构建与有限元分析[D]. 上海: 东华大学,2020:11-13.
HU Wen. Construction and finite element analysis of cotton model in sawtooth gin based on fractal theory[D]. Shanghai: Donghua University, 2020:11-13.
[6] 吴帆, 李勇, 陈晓川, 等. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(9):89-94.
WU Fan, LI Yong, CHEN Xiaochuan, et al. Finite element simulation on the compression process of cotton fiber assembly based on three-dimensional braided model[J]. Journal of Textile Research, 2022, 43(9):89-94.
[7] 高绪珊, 童俨, 庄毅, 等. 天然纤维的分形结构和分形结构纤维的开发[J]. 合成纤维工业, 2000(4):35-38.
GAO Xushan, TONG Yan, ZHUANG Yi, et al. The fractal structure of natural fibers and the development of fiber with fractal structure[J]. China Synthetic Fiber Industry, 2000(4):35-38.
[8] 杨树, 李玛莎. 羊毛纤维集合体的分形结构与其保暖性的关系[J]. 纺织学报, 2017, 38(8):11-15.
YANG Shu, LI Masha. Relationship between fractal structure and warmth retention properties of wool fiber assembly[J]. Journal of Textile Research, 2017, 38(8):11-15.
[9] FAN Jie, YANG Xue, LIU Yong. Fractal calculus for analysis of wool fiber: mathematical insight of its biomechanism[J]. Journal of Engineered Fibers and Fabrics, 2019,14:1-4.
[10] WANG Di, CHEN Xiaochuan, LI Yong, et al. Finite element analysis of cotton serrated ginning state based on three-dimensional braided modeling[J]. Journal of Natural Fibers, 2019(2):1-4.
[11] 朱海祥. 基于IFS法的分形图形生成及优化设计[J]. 高师理科学刊, 2016, 36(4):28-31.
ZHU Haixiang. Fractal graph generation and optimization design based on IFS method[J]. Journal of Normal Science, 2016, 36(4):28-31.
[12] 孙炜, 陈锦昌. 应用迭代函数系统获得分形图形的简易方法[J]. 工程图学学报, 2001(3):109-113.
SUN Wei, CHEN Jinchang. The simple way of using iteration function system to obtain the fractal graphics[J]. Journal of Engineering Graphics, 2001(3): 109-113.
[13] WANG Di, CHEN Xiaochuan, LI Yong, et al. Finite-element analysis of cotton serrated ginning state based on three-dimensional braided modeling[J]. Journal of Natural Fibers, 2019, 18(7):1-4.
[14] 陈利, 李嘉禄, 李学明. 细观单胞元分析三维编织复合材料的力学性能[C]// Composites: Life, Environment and High Technology: Proceedings of the 12th National Conference on Composites. 天津: 中国复合材料学会,2002:834-837.
CHEN Li, LIJialu,LI Xueming. Analysis of mechanical properties of three-dimensional braided composites by microcellular element[C]// Composites: Life, Environment and High Technology: Proceedings of the 12th National Conference on Composites. Tianjin: Chinese Society for Composite Meterials, 2002:834-837.
[15] 张曙光. 现代棉纺技术[M]. 3版. 上海: 东华大学出版社,2017:97-99.
ZHANG Shuguang. Modern cotton spinning technology[M]. 3rd ed. Shanghai: Donghua University Press, 2017:97-99.
[16] 王迪. 锯齿轧花机中棉纤维的有限元模型的改进与提高[D]. 上海: 东华大学, 2018:19-20.
WANG Di. Improvement of the finite element model of cotton fiber in sawtooth cotton gin process[D]. Shanghai: Donghua University, 2018:19-20.
[17] 何丽云. 废旧纺织品开松前上油预处理工艺研究[D]. 北京: 北京服装学院,2014:41.
HE Liyun. Oiling preteatment process for waste textiles before opening.[D] Beijing: Beijing Institute of Fashion Technology,2014:41.
[1] 高波, 吴菊明, 朱博, 王静安, 高卫东. 浆纱烘燥过程改善毛羽贴伏的方法及其效果[J]. 纺织学报, 2023, 44(12): 67-72.
[2] 孙玥, 周凌芳, 周祺旋, 张诗晨, 易洁伦. 运动内衣承托及其动态舒适性能的有限元分析[J]. 纺织学报, 2023, 44(09): 180-187.
[3] 陆浩杰, 李曼丽, 金恩琪, 张宏伟, 周赳. 基于弧形电容器的浆纱回潮率在线测量[J]. 纺织学报, 2023, 44(01): 201-208.
[4] 吴帆, 李勇, 陈晓川, 汪军, 徐敏俊. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(09): 89-94.
[5] 余鹏举, 王黎黎, 张文奇, 刘洋, 李文斌. 回潮率对石英纤维纱织造前后力学性能的影响[J]. 纺织学报, 2022, 43(05): 92-96.
[6] 李金键, 任家智, 梁灼, 贾国欣. 棉纺精梳机钳板摆轴的动力学分析[J]. 纺织学报, 2021, 42(06): 160-165.
[7] 胡文, 王迪, 陈晓川, 汪军, 李勇. 锯齿轧花中含棉籽棉朵模型的构建与仿真[J]. 纺织学报, 2020, 41(09): 27-32.
[8] 邵英海, 张明光, 曹继鹏, 郭昕, 韩贤国. 锡林刺辊速比对梳棉质量的影响[J]. 纺织学报, 2020, 41(01): 39-44.
[9] 康雪莲 应柏安 张欣 段锦. 接触状态下男上装基础版型对人体压力分布的有限元模型[J]. 纺织学报, 2018, 39(11): 116-121.
[10] 韩晨晨 程隆棣 高卫东 薛元 杨瑞华. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018, 39(02): 32-37.
[11] 武海良 姚一军 沈艳琴 . 纺织浆料的吸湿与放湿规律[J]. 纺织学报, 2016, 37(3): 72-77.
[12] 李勇 张宏 张有强 陈晓川 刘文亮. 棉纤维集合体压缩力传递与密度关系[J]. 纺织学报, 2016, 37(11): 19-25.
[13] 薛亚红 陈继刚 闫世程 骆俊廷 . 二维机织复合材料力学分析中的周期性边界条件研究[J]. 纺织学报, 2016, 37(09): 70-77.
[14] 崔玉梅 程隆棣 肖远淑. 云南野生牛角瓜纤维的吸湿与吸水性[J]. 纺织学报, 2016, 37(07): 22-27.
[15] 付正婷 杜兆芳 王健 董丹丹. 丝素蛋白改性聚丙烯腈纤维的涂覆法制备[J]. 纺织学报, 2016, 37(01): 6-10.
Viewed
Full text
22
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 3 0 0 19

  From Others local
  Times 12 10
  Rate 55% 45%

Abstract
76
Just accepted Online first Issue
0 0 76
  From Others local
  Times 60 16
  Rate 79% 21%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!