纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 152-158.doi: 10.13475/j.fzxb.20231007801

• 染整工程 • 上一篇    下一篇

单宁酸基阻燃多功能涂层及表面整理Lyocell织物

黄田田1,2, 宋媛珠1,2, 赵斌1,2()   

  1. 1.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    2.青岛大学 纺织服装学院, 山东 青岛 266071
  • 收稿日期:2023-10-23 修回日期:2024-06-11 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 赵斌(1985—),男,博士,教授。主要研究方向为阻燃高分子材料及功能纺织品。E-mail: binzhao@qdu.edu.cn
  • 作者简介:黄田田(1998—),女,硕士生。主要研究方向为纺织品阻燃改性。
  • 基金资助:
    国家自然科学基金面上项目(21975226);省部共建生物多糖纤维成形与生态纺织国家重点实验室科研启动项目(GZRC202017)

Tannic acid-based flame retardant multifunctional coating for surface finishing Lyocell fabrics

HUANG Tiantian1,2, SONG Yuanzhu1,2, ZHAO Bin1,2()   

  1. 1. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    2. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2023-10-23 Revised:2024-06-11 Published:2024-12-15 Online:2024-12-31

摘要:

为提高Lyocell织物的功能性,基于氢键作用在Lyocell织物表面原位构建单宁酸(TA)/六(1,2,4-三氮唑-3-胺基)环三磷腈(HATA)阻燃抗菌涂层,并引入乙烯基三乙氧基硅烷赋予织物疏水性。经涂层整理后的Lyocell织物极限氧指数由19.0%提高到了29.4%,在垂直燃烧测试中表现出离火自熄,残炭长度仅为5.5 cm,在微型量热测试中,最大热释放速率显著降低了74.8%。研究结果表明:TA/HATA涂层的构建有效促进了Lyocell织物高温成炭;阻燃织物具有良好的抗菌性能、疏水性和抗紫外线性能,对金黄色葡萄球菌和大肠杆菌的抑菌率分别为99.99%和99.88%,水接触角可达116°,UPF值可达64.04;涂层对织物力学性能影响不大,对白度影响较大。

关键词: Lyocell织物, 功能整理, 阻燃, 抗菌, 疏水, 抗紫外线, 功能性纺织品

Abstract:

Objective Lyocell fibers belong to regenerated cellulose fiber family with excellent comfort, breathability and biodegradability, which is widely used in clothing, bedding, furniture and other fields. However, the limiting oxygen index (LOI) of lyocell fiber is only 19%, indicating high flammability with a great threat to people's life and property safety. In addition, the hygroscopicity of lyocell fabrics provides suitable conditions for the propagation of microorganisms, which adversely influences human health. Therefore, the flame retardant and antibacterial modification for Lyocell fabrics is worthy of attention.

Method Aminoazole-based cyclotriphosphazene (HATA) is rich in phosphorus and nitrogen, which can achieve efficient flame retardant for fabrics. Besides, tannic acid (TA) belongs to biomass, which has a wide range of sources. Glycidyl trimethyl ammonium chloride (GTA) was utilized to improve the loading of tannic acid on the fabric, amnd triethoxyvinylsilane (VTEO) was selected to endow the fabric hydrophobicity. A multifunctional lyocell fabric was prepared by the dip-drying method, and the flame retardant, UV resistance, hydrophobicity and antibacterial properties were investigated by vertical flame tests (VFT), limiting oxygen index (LOI) evaluation, microscale combustion calorimetry (MCC), anti-UV performance test, contact angle test, and oscillating method of antimicrobial test.

Results In this study, control lyocell was burned out with little char residue during the VFT. However, treated Lyocell passed VFT with self-extinguish behavior and the char residue was only 5.5 cm. Besides, treated Lyocell after 5 laundering failed to pass VFT, but remained a little char residue. Compared with the control lyocell, the LOI value of treated Lyocell increased from 19.0% to 29.4%. MCC test showed that the peak heat release (PHRR) and total heat release (THR) of treated Lyocell decreased 74.9% and 65%, respectively. Moreover, TG resulted that the introduction of the coating reduced the maximum decomposition rate (Rmax) and the temperature at the maximum decomposition rate (Tmax) obviously, improving the char residue rate from 14.3% to 40.3%. The above results indicated that the coating played an important role in promote the formation of char layer to protect the fabrics. Meanwhile, through SEM, the micromorphology of control lyocell, treated lyocell, and the char residue of treated lyocell was examined. The char residue of treated Lyocell remained the original woven structure and had some noticeable bubbles. To detect the UV resistance of treated Lyocell, ultraviolet spectrophotometer was used to test the UV protection factor (UPF) of samples. The UPF value of treated lyocell increased from 7.69 to 64.04, which was over 40. According to the standard of GB/T 18830-2009, the treated lyocell can be defined as "anti-ultraviolet production". In addition, the water connect angle (WCA) of treated lyocell was 116°. When various liquids, such as coke, milk, juice, and tea, were applied on the surface of the treated lyocell, the droplets maintained stable spherical shape for an extended period. To evaluate the antibacterial property of treated lyocell against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), the shaking flask method was used to determine the antibacterial rate, the antimicrobial rates of the treated lyocell against S. aureus and E. coli reached 99.99% and 99.88%, respectively.

Conclusion A multifunctional coating, including the flame retardant, antibacterial, hydrophobic and anti-ultraviolet functions, was prepared by using the hydrogen bonding between HATA and TA, resulting in the formation of a water-insoluble precipitate. Furthermore, the introduction of VTEO provides hydrophobicity to the fabric. The treated Lyocell fabric passed VFT with self-extinguishing behavior, increasing the LOI value from 19.0% to 29.4% and the water contact angle to 116°. According to MCC test, the TA/HATA coating reduced the HRC, PHRR and THR values of lyocell fabrics. The TG results demonstrated that TA/HATA coating significantly improved the thermal stability and char residue rate of lyocell, and decreased the initial decomposition rate. Moreover, the coating endowed lyocell excellent antibacterial properties, hydrophobicity and UV resistance. This method provides a new strategy for constructing multifunctional fabrics.

Key words: Lyocell fabric, functional finish, flame retardant, antibacterial, hydrophobic, UV resistance, functional textile

中图分类号: 

  • TS102

图1

Lyocell织物垂直燃烧测试"

表1

未处理和处理后Lyocell织物的MCC数据结果"

样品 热释放
速率峰值/
(W·g-1)
热释放速
率峰值处
温度/℃
总热释
放速率/
(kJ·g-1)
热释放
能力/
(J·g-1·K-1)
残炭
量/%
未处理 121.3 344.8 6.0 241.5 12.5
处理后 30.5 269.1 0.8 59.3 45.8

表2

VFT和LOI的相关数据"

样品 质量增加
率/%
自熄时间/s 续燃时间/s 阴燃时间/s 炭长/cm LOI值/%
未处理 9.7±0.4 130.5±5.5 燃烧完全 19.0
处理后 19.7±0.5 6.7±0.4 0 0 5.5±0.2 29.4
处理后+5次水洗 1.5±0.6 14.2±1.4 3.0±0.5 部分残炭 20.7

图2

未处理和处理后Lyocell织物的TG和DTG曲线"

表3

未处理和处理后Lyocell织物的TGA和DTG的特征参数"

样品 T5%/
Tmax/
Rmax/
(%·℃-1)
残炭量/
%
未处理 212.3 330.5 0.8 14.3
处理后 201.0 280.9 0.5 40.3

图3

处理前后Lyocell织物的扫描电镜照片"

表4

未处理和处理后Lyocell织物的抗紫外线数据"

样品 UPF UVA透射比/% UVB透射比/%
未处理 7.69 14.27 10.76
处理后 64.04 3.28 1.39

图4

处理后Lyocell织物和处理后Lyocell织物水洗5次的接触角图片和疏水数码照片"

表5

未处理、处理后Lyocell织物和处理后Lyocell织物水洗5次后的抗菌效果(金黄色葡萄球菌和大肠杆菌)"

菌种 抑菌率
未处理织物 处理后织物 处理后织物水洗5次
S. aureus 0 99.99 88.85
E. coli 0 99.88 96.46

表6

未处理Lyocell织物和处理后Lyocell织物的断裂强力、断裂伸长率及白度"

样品名称 断裂强力(N) 断裂伸长率(%) 白度
经向 纬向 经向 纬向
未处理织物 857.0 350.5 12.6 15.8 76.5
处理后织物 701.0 348.0 10.1 14.1 40.3
[1] LIU X H, ZHANG Y G, CHENG B W, et al. Preparation of durable and flame retardant Lyocell fibers by a one-pot chemical treatment[J]. Cellulose, 2018, 25: 6745-6758.
[2] LIU Y S, ZHAO W J, ZHANG J Y, et al. Inspired by sodium alginate: amino acids cooperating with sodium ions to prepare phosphorus-free flame retardant Lyocell fabric[J]. Cellulose, 2022, 29: 5339-5358.
[3] 林生根, 刘晓辉, 苏晓伟, 等. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(7):25-30.
LIN Shenggen, LIU Xiaohui, SU Xiaowei, et al. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant[J]. Journal of Textile Research, 2021, 42(7): 25-30.
[4] XIAO M Y, GUO Y B, ZHANG J Y, et al. Diethylene triamine penta methylene phosphonic acid encountered silver ions: a convenient method for preparation of flame retardant and antibacterial Lyocell fabric[J]. Cellulose, 2021, 28: 7465-7481.
[5] ZHANG Y T, TAN W, ZUO C L, et al. A cleaner and sustainable preparation of green flame retardant and antibacterial Lyocell fabric[J]. Cellulose, 2023, 30: 6081-6097.
[6] RAO W H, SHI J J, YU C B, et al. Highly efficient, transparent, and environment-friendly flame-retardant coating for cotton fabric[J]. Chemical Engineering Journal, 2021. DOI:10.1016/J.CEJ.2021.130556.
[7] 邓继勇, 柳芊, 董新理, 等. 新型氮-磷阻燃剂制备及其对棉织物的阻燃性能[J]. 纺织学报, 2017, 38(11): 97-11.
DENG Jiyong, LlU Qian, DONG Xinli, et al. Preparation of a novel N-P flame retardant and its flame retardant properties in cotton fabric[J]. Journal of Textile Research, 2017, 38(11): 97-11.
[8] 黄益婷, 程献伟, 关晋平, 等. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(6):94-99,106.
HUANG Yiting, CHENG Xianwei, GUAN Jinping, et al. Phosphorus/nitrogen-cotaining flame retardant for flame retardant finishing of polyester/cotton blended fabric[J]. Journal of Textile Research, 2022, 43(6): 94-99,106.
[9] HUANG T T, NING K, ZHAO B. Two birds, one stone: Enhancement of flame retardancy and antibacterial property of viscose fabric using an aminoazole-based cyclotriphosphazene[J]. International Journal of Biological Macromolecules., 2023. DOI:10.1016/j.ijbiomac.2023.126875.
[10] WANG M X, MUHAMMA T, GAO H L, et al. Targeted pH-responsive chitosan nanogels with Tanshinone IIA for enhancing the antibacterial/anti-biofilm efficacy[J]. International Journal of Biological Macromolecules, 2023, 237: 1-7.
[11] ZHANG N, WANG W D, ZHOU M, et al. A controllable, universal, and natural supramolecular assembly coating strategy for multifunctionality textiles of antibacterial properties, UV resistance, antioxidant, and secondary reactivity[J]. Industrial Crops and Products, 2023. DOI:10.1016/j.indcrop.2023.116637.
[12] MAKHLOUF G, ABDELKHALIK A, AMEEN G. Synthesis of a novel highly efficient flame-retardant coating for cotton fabrics with low combustion toxicity and antibacterial properties[J]. Cellulose, 2021, 28(13): 8785-8806.
[13] ZHANG J J, CHEN B, LIU J, et al. Multifunctional antimicrobial and flame retardant cotton fabrics modified with a novel N,N-di(ethyl phosphate) biguanide[J]. Cellulose, 2020, 27(12): 7255-7269.
[14] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(2): 222-229.
JIANG Qi, LIU Yun, ZHU Ping. Preparation and prop-erties of flame retardant/anti-ultraviolet cotton fabrics with tea polyphenol based flame retardants[J]. Journal of Textile Research, 2023, 44(2): 222-229.
[15] GAO F, WANG T, XIAO J, et al. Antibacterial activity study of 1,2,4-triazole derivatives[J]. European Journal of Medicinal Chemistry, 2019, 173: 274-281.
[1] 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165.
[2] 邴琳涵, 王锐, 吴雨航, 刘博同, 黄寒江, 魏建斐. 聚对苯二甲酸乙二醇酯基碳点热解法制备及其在阻燃改性中的应用[J]. 纺织学报, 2024, 45(10): 1-8.
[3] 宇平, 王海跃, 汪毅, 孙钦超, 王彦, 胡祖明. 聚酯织物的直接氟修饰疏水改性及其作用机制[J]. 纺织学报, 2024, 45(10): 137-144.
[4] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[5] 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54.
[6] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[7] 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128.
[8] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[9] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[10] 李成才, 朱登辉, 朱海霖, 郭玉海. 聚四氟乙烯膜的超疏水改性及应用研究进展[J]. 纺织学报, 2024, 45(08): 65-71.
[11] 王皓月, 胡亚宁, 赵健, 杨鹏. 基于蛋白质类淀粉样聚集的纤维表面功能化[J]. 纺织学报, 2024, 45(08): 1-9.
[12] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[13] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[14] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[15] 吴雨航, 魏建斐, 顾伟文, 王玉萍, 张安莹, 王锐. 共聚阻燃改性聚对苯二甲酸乙二醇酯的制备及其性能[J]. 纺织学报, 2024, 45(06): 1-10.
Viewed
Full text
19
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 3 0 0 16

  From Others local
  Times 8 11
  Rate 42% 58%

Abstract
68
Just accepted Online first Issue
0 0 68
  From Others local
  Times 55 14
  Rate 80% 20%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!