纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 179-186.doi: 10.13475/j.fzxb.20230906201

• 机械与设备 • 上一篇    下一篇

精梳机钳板机构接触碰撞动力学建模与仿真

畅博彦1,2(), 韩芳孝1, 周杨1, 关鑫1   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津工业大学 天津市现代机电装备技术重点实验室, 天津 300387
  • 收稿日期:2023-09-28 修回日期:2024-08-06 出版日期:2025-01-15 发布日期:2025-01-15
  • 作者简介:畅博彦(1985—),男,副教授,博士。主要研究方向为机构学和机械系统动力学。E-mail:mmts_tjpu@126.com
  • 基金资助:
    国家自然科学基金项目(52005368);天津市高等学校创新团队培养计划资助项目(TD13-5037)

Modeling and simulation of contact collision dynamics for nipper mechanism in comber

CHANG Boyan1,2(), HAN Fangxiao1, ZHOU Yang1, GUAN Xin1   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
  • Received:2023-09-28 Revised:2024-08-06 Published:2025-01-15 Online:2025-01-15

摘要: 高速、高产、优质是新一代国产棉纺精梳机的发展目标,而当前精梳机存在的主要问题之一是高速运行时钳板机构产生的冲击严重限制了精梳机转速的提升,针对该问题进行动力学研究以提升钳板机构稳定性,达到推进精梳机高速化的目的。首先,以中支点式钳板机构为研究对象,基于接触碰撞理论建立钳板在接触和分离瞬时的冲击力计算模型,结合Lagrange方程对钳板机构进行接触碰撞动力学建模。其次,运用MatLab对所建动力学模型进行数值计算仿真,结合三维虚拟样机仿真验证模型的正确性和有效性。最后,分析钳板机构工况参数和加压弹簧刚度对冲击运动和冲击接触应力的影响规律。结果表明:钳口与牵吊杆处的最大接触应力远大于稳定接触应力,且回弹量和回弹时间会随锡林轴转速的提高而增大,随加压弹簧刚度的增大而减小。

关键词: 精梳机, 钳板机构, 接触碰撞力, Lagrange方程, 动力学

Abstract:

Objective High speed, high yield and high quality are the development goals of the new generation of domestic combing machines. However, the main problem of the current combing machine is that the impact generated by the nipper mechanism during operation seriously limits the improvement of the combing machine speed. The dynamic research to solve problem is of great significance to improve the stability of the nipper mechanism and promote the high speed of the comber.

Method The mid-fulcrum nipper mechanism was taken as the research object. Based on the contact collision theory, two calculation models for the instantaneous contact force of the nipper mechanism during contact and separation were established. Combined with the Lagrange equation, the contact collision dynamic modeling of the nipper mechanism was carried out. The dynamic model was then simulated using MatLab, and the correctness and effectiveness of the model were verified by three-dimensional virtual prototype simulation. Finally, the influence of the working parameters of the nipper mechanism and the stiffness of the pressure spring on the contact motion and the contact stress was analyzed.

Results The results showed that the rebound amount and rebound time of the jaw and the steeve of the comber nipper mechanism both increased as the main shaft speed went higher, and that the maximum contact stress increased with the increase of the main shaft speed, and decreased with the increase of the contact times. The maximum contact stress was much larger than the stable contact stress. Therefore, for the high-speed comber, the material and heat treatment methods should be considered to avoid the damage caused by the maximum stress exceeding the allowable value. The rebound amount and rebound time of jaw and steeve of the comber nipper mechanism demonstrated a decrease as the spring stiffness became higher. The stable contact stress would increase with the increase of the spring stiffness, and the maximum stress remained stable.

Conclusion The contact force calculation model of the jaw and the steeve of the comber nipper mechanism and the contact collision dynamic model of the nipper mechanism are established, and the numerical simulation is carried out. The correctness and effectiveness of the established contact dynamic model are verified by virtual prototype simulation. The influence of different working condition parameters and spring stiffness of the nipper mechanism on contact motion and contact stress is analyzed by numerical simulation. The conclusions can provide a theoretical basis for further increasing the speed of high-efficiency comber.

Key words: comber, nipper mechanism, contact force, Lagrange equation, dynamic

中图分类号: 

  • TH112

图1

钳板机构示意图 0—机架;1—锡林轴;2—钳板摆轴;3—张力轴; 4—后摆臂;5—下钳板;6—前摆臂;7—偏心轮;8—加压弹簧;9—上钳板;10—牵吊杆组件;11—套筒;12—导杆。"

图2

钳板摆动加压机构运动示意图"

图3

精梳机钳板摆动及加压机构简图"

表1

钳板机构各构件几何参数与物理参数"

仿真参数 数值 仿真参数 数值
L4/m 0.082 β2/rad 1.021
L5/m 0.187 β3/rad 1.158
L6/m 0.074 Jv1 0.29
L7/m 0.009 Jv2 0.29
L9/m 0.072 Sv1 0.37
L11/m 0.087 Sv2 0.37
L12/m 0.029 JE1/ (N·m-2) 2.05×1011
LEG/m 0.085 JE2/ (N·m-2) 2.05×1011
LCE/m 0.075 SE1/ (N·m-2) 1.05×1011
LO1O3/m 0.220 SE2/(N·m-2) 1.05×1011
R1/m 0.029 τmax 0.051 5
R2/m 0.025 A/m2 1.97×10-4
β1/rad 0.012

图4

不同转速工况下钳板开闭口角位移变化曲线"

图5

不同转速工况下FH位移变化曲线"

图6

不同转速工况下钳口角速度变化曲线"

图7

不同转速工况下冲击力随变形量的变化曲线"

图8

不同转速工况下接触应力随变形量的变化曲线"

图9

回弹量和回弹时间随弹簧刚度系数的变化曲线"

表2

弹簧刚度系数对钳板机构冲击的影响"

弹簧刚度系数
k / (N·mm-1)
最大接触应力/MPa 稳定接触应力/MPa
钳口 牵吊杆 钳口 牵吊杆
7 308.67 179.86 10.36 0.60
8 308.68 179.94 10.65 0.70
9 308.69 180.02 11.18 0.78
10 308.71 180.10 11.71 0.86
11 308.72 180.18 12.16 0.99
[1] 任家智, 贾国欣. 高效棉纺精梳关键技术[M]. 北京: 中国纺织出版社, 2017: 3-10.
REN Jiazhi, JIA Guoxin. Key technology of high efficiency cotton spinning combing[M]. Beijing: China Textile & Apparel Press, 2017: 3-10.
[2] 任家智, 梁灼, 贾国欣, 等. 棉纺精梳机钳板加压机构动力学分析[J]. 棉纺织技术, 2022, 50(1): 22-26.
REN Jiazhi, LIANG Zhuo, JIA Guoxin, et al. Kinetics analysis of nipper pressure mechanism in cotton spinning comber[J]. Cotton Textile Technology, 2022, 50(1): 22-26.
[3] 李金键, 任家智, 梁灼, 等. 棉纺精梳机钳板摆轴的动力学分析[J]. 纺织学报, 2021, 42(6): 160-165.
LI Jinjian, REN Jiazhi, LIANG Zhuo, et al. Dynamic analyses on nipper pendulum shaft in cotton combers[J]. Journal of Textile Research, 2021, 42(6): 160-165.
[4] 梁灼, 贾国欣, 任家智, 等. 棉纺精梳机钳板的变形及其应力分析[J]. 纺织学报, 2021, 42(12): 145-150.
LIANG Zhuo, JIA Guoxin, REN Jiazhi, et al. Deformation and stress analysis on nippers of cotton combing machine[J]. Journal of Textile Research, 2021, 42(12): 145-150.
[5] 刘鹏展, 贾国欣, 任家智. 精梳机钳板机构的振动分析[J]. 纺织学报, 2015, 36(9): 108-113.
LIU Pengzhan, JIA Guoxin, REN Jiazhi. Simulation and vibration of combing nipper mechanism[J]. Journal of Textile Research, 2015, 36(9): 108-113.
[6] 王晓维, 周国庆, 李新荣. 棉精梳机钳板开闭口时间的研究[J]. 纺织学报, 2015, 36(7): 121-126.
WANG Xiaowei, ZHOU Guoqing, LI Xinrong. Nipper opening-closing time of cotton comber[J]. Journal of Textile Research, 2015, 36(7): 121-126.
[7] 赵春花, 汤文成, 王荣. 精梳机钳板机构的非线性动力学模型[J]. 中国机械工程, 2009, 20(6): 678-682.
ZHAO Chunhua, TANG Wencheng, WANG Rong. Dynamics modeling of nipper mechanism on comber with non-linear finite element method[J]. China Mechanical Engineering, 2009, 20(6): 678-682.
[9] SKRINJAR L, SLAVIČ J, BOLTEŽAR M. A review of continuous contact-force models in multibody dyna-mics[J]. International Journal of Mechanical Sciences, 2018, 145: 171-187.
王庚祥, 马道林, 刘洋, 等. 多体系统碰撞动力学中接触力模型的研究进展[J]. 力学学报, 2022, 54(12): 3239-3266.
WANG Gengxiang, MA Daolin, LIU Yang, et al. Research progress of contact force models in the collision mechanics of multibody system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3239-3266.
[10] 董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述[J]. 力学进展, 2009, 39(3): 352-359.
DONG Fuxiang, HONG Jiazhen. Review of impact problem for dynamics of multibody system[J]. Advances in Mechanics, 2009, 39(3): 352-359.
[11] FLORES P, MACHADO M, SILVA M T, et al. On the continuous contact force models for soft materials in multibody dynamics[J]. Multibody System Dynamics, 2011, 25(3): 357-375.
[12] LANKARANI H M, NIKRAVESH P E. A contact force model with hysteresis damping for impact analysis of multibody systems[J]. Journal of Mechanical Design, 1990, 112(3): 369-376.
[13] 秦志英, 陆启韶. 基于恢复系数的碰撞过程模型分析[J]. 动力学与控制学报, 2006(4): 294-298.
QIN Zhiying, LU Qishao. Analysis of impact process model based on restitution coefficient[J]. Journal of Dynamics and Control, 2006(4): 294-298.
[14] HU S, GUO X. A dissipative contact force model for impact analysis in multibody dynamics[J]. Multibody System Dynamics, 2015, 35: 131-151.
[15] GONTHIER Y, MCPHEE J, LANGE C, et al. A regularized contact model with asymmetric damping and dwell-time dependent friction[J]. Multibody System Dynamics, 2004, 11(3): 209-233.
[16] 李雪梅, 王萌, 刘彦豪, 等. 航天器非火工分离装置接触建模与仿真分析[J]. 振动与冲击, 2023, 42(6): 298-306.
LI Xuemei, WANG Meng, LIU Yanhao, et al. Contact modeling and simulation analysis on the non-explosive separation device of a spacecraft[J]. Journal of Vibration and Shock, 2023, 42(6): 298-306.
[17] 魏展, 金国光, 李博, 等. 剑杆织机打纬凸轮接触碰撞力建模与仿真[J]. 纺织学报, 2020, 41(3): 154-159.
WEI Zhan, JIN Guoguang, LI Bo, et al. Modeling and simulation of contact force generated by beating-up cam in rapier looms[J]. Journal of Textile Research, 2020, 41(3): 154-159.
[18] LV Tianqi, ZHANG Yunqing, DUAN Yupeng, et al. Kinematics & compliance analysis of double wishbone air suspension with frictions and joint clearances[J]. Mechanism and Machine Theory, 2021, 156: 1-8.
[19] LIU Xiaofeng, ZHANG Xiaoyu, CAI Guoping, et al. A collision control strategy for detumbling a non-cooperative spacecraft by a robotic arm[J]. Multibody System Dynamics, 2021, 53(3): 225-255.
[20] 任家智. 纺纱工艺学[M]. 2版. 上海: 东华大学出版社, 2021: 69.
REN Jiazhi. Technology of yarn spinning[M]. 2nd ed. Shanghai: Donghua University Press, 2021: 69.
[21] PEREIRA C, RAMALHO A, AMBROSIO J. An enhanced cylindrical contact force model[J]. Multibody System Dynamics, 2015, 35(3): 277-298.
[22] LUO Lianzhen, MEYER N. A compliant contact model including interference geometry for polyhedral objects[J]. Journal of Computational and Nonlinear Dynamics, 2006, 1(2): 150-159.
[23] LUO Lianzhen, MEYER N. Development and validation of geometry-based compliant contact models[J]. Journal of Computational and Nonlinear Dynamics, 2011, 6(1): 1-6.
[24] BANERJEE A, CHANDA A, DAS R. Historical origin and recent development on normal directional impact models for rigid body contact simulation: a critical review[J]. Archives of Computational Methods in Engineering, 2017, 24(2): 397-422.
[25] PATIL D, FRED H C. Experimental investigations on the coefficient of restitution for sphere-thin plate elastoplastic impact[J]. Journal of Tribology, 2018, 140(1): 1-7.
[26] HASHEMNIA K. Experimental study of the effect of temperature on the coefficient of restitution of steel balls impact to some industrial metal sheets at elevated temperatures[J]. Powder Technology, 2020, 368: 170-177.
[1] 邓钢, 张涛, 吴超平, 王军, 张磊. 异形二醋酯纤维干法纺丝成形过程模拟及其截面分析[J]. 纺织学报, 2024, 45(09): 42-49.
[2] 张琦, 左露娇, 屠佳妮, 聂美婷. 经编贾卡鞋面材料透气性的数值模拟[J]. 纺织学报, 2024, 45(09): 78-83.
[3] 黄连香, 王祥荣, 侯学妮, 钱琴芳. 茜草色素对生物基聚酰胺56的染色性能[J]. 纺织学报, 2024, 45(07): 94-103.
[4] 李博, 刘旭柠, 郭杰, 胡凯, 畅博彦, 魏展. 空间连杆引纬机构的刚柔耦合磨损分析[J]. 纺织学报, 2024, 45(06): 186-192.
[5] 袁野, 张安莹, 魏丽菲, 高建伟, 陈咏, 王锐. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(04): 50-58.
[6] 刘金儒, 李新荣, 王建坤, 王浩, 师帅星, 王彪. 精梳机分离罗拉齿轮传动机构优化[J]. 纺织学报, 2024, 45(03): 177-184.
[7] 杨美慧, 李博, 沈艳琴, 武海良. 再生角蛋白凝胶对纺织退浆废水中浆料分子的吸附性能[J]. 纺织学报, 2024, 45(02): 142-152.
[8] 许高平, 孙以泽. 移动机械臂牵引卷装纱线的动态建模与控制[J]. 纺织学报, 2024, 45(01): 1-11.
[9] 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105.
[10] 刘金儒, 李新荣, 王浩, 师帅星. 棉精梳机分离罗拉混合驱动系统优化[J]. 纺织学报, 2023, 44(11): 190-198.
[11] 姜绍华, 梁帅童, 裴刘军, 张红娟, 王际平. 基于概率密度函数的织物染色侵入动力学分析[J]. 纺织学报, 2023, 44(10): 90-97.
[12] 冯清国, 巫鳌飞, 任家智, 陈宇恒. 棉纺精梳机分离罗拉连杆驱动机构动力学仿真及有限元分析[J]. 纺织学报, 2023, 44(09): 197-204.
[13] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[14] 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9.
[15] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!