纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 217-226.doi: 10.13475/j.fzxb.20240101902

• 综合述评 • 上一篇    下一篇

基于人体呼吸力学的柔性可穿戴呼吸监测技术研究进展

许君1,2,3,4, 鹿楠1, 李婷1, 成玲1, 牛丽2, 郝天煦1, 张诚4,5()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.苏州大学 纺织行业智能纺织服装柔性器件重点实验室, 江苏 苏州 215123
    3.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    4.天津工业大学 天津市光电检测技术与系统重点实验室, 天津 300387
    5.天津工业大学 电子与信息工程学院, 天津 300387
  • 收稿日期:2024-01-09 修回日期:2024-10-09 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 张诚(1982—),男,教授,博士。主要研究方向为智能可穿戴光纤核心技术。E-mail: zhangcheng@tiangong.edu.cn
  • 作者简介:许君(1982—),女,教授,博士。主要研究方向为智能、互动、多功能服装及其智能制造。
  • 基金资助:
    纺织行业智能纺织服装柔性器件重点实验室开放课题资助项目(SDHY2304);天津市光电检测技术与系统重点实验室开放课题(2024LODTS111);天津市光电检测技术与系统重点实验室开放课题(2024LODTS112)

Research progress in flexible wearable respiratory monitoring technology based on human respiratory mechanics

XU Jun1,2,3,4, LU Nan1, LI Ting1, CHENG Ling1, NIU Li2, HAO Tianxu1, ZHANG Cheng4,5()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Intelligent Textile and Apparel Flexible Devices in Textile Industry, Soochow University, Suzhou, Jiangsu 215123, China
    3. Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
    4. Tianjin Key Laboratory of Optoelectronic Detection and System, Tiangong University, Tianjin 300387, China
    5. School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
  • Received:2024-01-09 Revised:2024-10-09 Published:2025-01-15 Online:2025-01-15

摘要:

为促进呼吸监测技术在可穿戴纺织品领域的应用,以人体呼吸力学的相关理论为研究基础,分析了呼吸监测在不同年龄段、不同健康状况等人群下的重要作用,从基底形式和信号调制形式2个角度出发,重点总结归纳了以导电纤维和光导纤维为敏感元件的柔性可穿戴呼吸监测传感器的研究进展,并分析对比了各种类型的优缺点,综述了柔性可穿戴呼吸监测技术在医疗保健、运动健身和工作生活领域的应用。总结认为:柔性可穿戴光电式呼吸监测传感器相较于电学式传感器有抗电磁干扰、测量电气安全等优势;基于强度调制原理的光纤传感器较基于波长调制原理的光电式传感器具有制作简单、信号处理硬件小、受环境干扰小等优势;提出了智能可穿戴呼吸监测设备目前存在的局限性问题。指出未来研究方向为:传感器性能需要在保证精确度的基础上实现耐用性、耐水洗性且有效地消除运动伪像;需要优化传感器的结构设计且在满足检测灵敏度和数据采集连贯性的基础上提高穿戴者佩戴舒适度;传感器需要实现在服装上的可逆性拆卸、可重复性使用和可穿戴呼吸监测一体化。

关键词: 呼吸力学, 可穿戴, 电学式呼吸监测传感器, 光电式呼吸监测传感器, 呼吸监测技术

Abstract:

Significance Breathing, as an important physiological characteristic of humans, can respond to various stressful physiological, psychological, and environmental stimuli. Respiratory rate is an important indicator of human signs in clinical practice, occupational environment, sports activities, and exercise. On the one hand, static monitoring is commonly used nowadays for human respiratory monitoring. Respiratory monitoring equipment has low integration and is inconvenient to move, making it difficult to meet the current consumer demand for a non sensory mobile application of their own respiratory monitoring. This has led to a gradual shift in respiratory monitoring from the conventional inpatient testing to wearable, home based, and mobile monitoring. On the other hand, the respiratory information collection method driven by respiratory biomechanical movements, which involves the fluctuation of the chest and abdomen, has the advantages of comfortable wearing, non-invasive, and multiple monitoring and collection locations compared to the method that requires additional collection devices on the neck and face through the use of respiratory airflow temperature, sound, and so on.

Progress In order to further explore respiratory monitoring methods based on wearable technology, this review article focuses on summarizing and analyzing the principles, integrated positions, performance advantages and disadvantages, and application fields of flexible wearable electrical and optoelectronic respiratory monitoring sensors based on respiratory mechanics from two aspects, i.e. the substrate form and the signal modulation form. In order to promote respiratory monitoring clothing to become a new generation of portable wearable devices, the changes in body undulation caused by respiratory mechanics under different breathing modes, as well as the breathing patterns of different age groups and health conditions were introduced. Breathing is divided into chest breathing and abdominal breathing, and the abdominal breathing emphasizes abdominal movement and more involving the movement of the diaphragm, while the chest breathing involves more movement of the chest wall. Based on the research status of wearable respiratory monitoring technology, this paper focuses on summarizing and analyzing the working principles and advantages and disadvantages of electrical and photoelectric sensors related to flexible wearable respiratory monitoring. This paper reviews the application of flexible wearable respiratory monitoring technology in the fields of healthcare, sports and fitness, and work and life. The core issues of performance and integration limitations of respiratory monitoring sensors have been raised.

Conclusion and Prospect The wearable respiratory monitoring technology that can be monitored in real time has achieved monitoring of respiratory frequency and mode based on respiratory force, electricity and optics, in three application fields: healthcare, national sports health, and occupational health, and has also begun to take shape in terms of marketization. These three areas are also of great significance in addressing social issues related to aging, labor reduction, and overall health improvement. However, intelligent wearable respiratory monitoring technology currently has two important limitations. One is the respiratory monitoring sensor and its technical issues. Electrical and photoelectric sensors produce motion artifacts (i.e., they detect motion signals unrelated to breathing) when monitoring respiratory movements. The methods to solve such problems can be approached from the following perspectives: in terms of materials, flexible dry electrodes can be considered to achieve a close fit between the sensor and the skin so as to achieve accurate monitoring; in terms of signal processing, optimization of transmission algorithms can be considered, and specific filters can be designed in the signal output device to address stability and motion artifacts. The current respiratory monitoring sensors find it difficult to ensure data collection continuity while ensuring high sensitivity. For example, coated strain sensors have high sensitivity, but their repeatability is poor, which can lead to performance degradation and data collection interruption after repeated folding. In the future, optimization of coating materials, coating methods, and sensor packaging materials can be considered. Integration method of respiratory monitoring sensors. The second issue is the wearability of ″respiratory force″ intelligent monitoring devices. Intelligent wearable respiratory monitoring devices usually include various hardware components, and the weight of these components will affect the wearer's wearing comfort. Therefore, optimizing component materials and structures can be considered to reduce equipment weight. Regarding the washability of intelligent wearable devices for respiratory monitoring. Currently, most wearable devices are difficult to wash and clean while ensuring their performance due to the inclusion of electronic components. In order to address this limitation, a reversible disassembly design can be considered to facilitate the disassembly of electronic components and sensor modules, prolonging the service life of wearable respiratory monitoring devices. For the other part of wearable respiratory monitoring devices with waterproof functions, it is still necessary to consider whether the external impact they may encounter during machine washing will affect the performance of the device. In the future, further research and testing are needed on intelligent wearable devices for respiratory monitoring so as to ensure the waterproof performance of the equipment while fully considering the impact of external forces generated during machine washing on the structure and performance of the equipment. Wearable respiratory monitoring technology, as an innovative health technology, has shown tremendous potential in many fields. The combination of respiratory monitoring technology and human respiratory mechanics can accurately monitor and analyze respiratory signals, providing key basis for health assessment and disease diagnosis. With the continuous progress of science and technology and the expansion of application scenarios, wearable respiratory monitoring technology can further promote the development of human health.

Key words: respiratory mechanics, wearable, electrical respiratory monitoring sensor, photoelectric respiratory monitoring sensor, respiratory monitoring technology

中图分类号: 

  • TN29

表1

电学式呼吸监测传感器相关参数总结"

基底 特征 材料 机制 集成
位置
性能 优点 局限性 应用领域


+灵敏度高
+体积小
+灵活性好
-暴露在外的纱线材料易损坏
聚四氟乙
烯/镀银
锦纶[15]
胸腔起伏引起传感器拉伸收缩导致电信号发生变化 弹性带 1)灵敏度:1%拉伸应变下输出0.5 V
2)响应时间:5 Hz拉伸频率下为70 ms
自供电;灵
敏度高;响
应时间快
材料脱落
易坏
医疗保健
镀银、未镀
银锦纶/
氨纶[16]
呼吸引起的纱线张力拉伸导致电阻变化 纺织品 1)灵敏度:小于10%应变下具有优异的灵敏性
2)线性电阻:低于
39.37 Ω/cm
3)回复伸长率:低于21%
相对电阻变化明显;重复
性好
需要锁缝工
艺,工艺相
对复杂
医疗保健、
运动健身


+灵敏度高
+呼吸频率误
差小
+灵活衬入
-纱线相互摩擦致材料损坏失效
镀铜镀镍聚酯[18] 呼吸产生的机械变化引起电容变化 服装 呼吸频率误差:
健康受试者和慢性阻塞性肺患者分别为0.01和-0.14次/min
准确性好;
成本低
需考虑使用
者数据可变
医疗保健
聚苯胺[19] 呼吸引起的线圈摩擦拉伸导致电阻变化 服装 灵敏度:6%应变和10%应变下的敏感因子分别为7.49和7.85 电阻率降低;
稳定性好
直接对织物
原位聚合导
电处理
运动健身


+灵敏度高
+重复性好
+弹性贴身
-凝胶类容易水
分消失致基底
变硬
聚偏二氟乙烯[20] 呼吸对压电薄膜施加作用力导致输出电压变化 弹性
基底
1)灵敏度:0.24 V/N,最小能检测0.05 N力
2)响应时间:4 ms
3)呼吸频率误差:
0.004 Hz
灵敏度高;
响应时间短;
重复性好
凝胶类基底
易变硬
医疗保健、
运动健身
改性多壁碳纳米管/聚氨酯[23] 呼吸引起胸腔周长发生变化导致电阻变化 弹性
基底
1)断裂伸长率:
(301.5±8.2)%
2)压阻灵敏度:
4.282 kPa-1
3)压阻重复性误差:小于±6.63%
柔性好;
重复性好
需通过铜制
子母扣固定
医疗保健、
运动健身

表2

光电式呼吸监测传感器相关参数总结"

信号
调制
特征
介绍
材料 原理 集成
位置
性能 优点 局限性 应用领域




+灵敏度高
+体积小
+抗电磁干扰
-易受环境温度影响
-需用波长解调设备
-多数量分布式测量
光纤布
拉格
光栅[27]
在光纤中特定位置制造具有周期性折射率变化的光栅区域,将反射特定波长的光 弹性带 应变灵敏系数:
1.03×10-6
多点测量、灵敏度高 易受环境温度影响 工作生活
光纤布
拉格
光栅[29]
弹性带 检测准确率:
97.187 5%
准确率较高;
系统简单;成本低;抗电磁干扰
正常呼吸误判为屏息的概率最大 医疗保健
聚甲基丙烯酸甲酯芯聚合物光纤[30] 光在弯曲部位时发生入射角突变,导致光线从纤芯向外部环境传播 热塑性聚
氨酯(TPU)
弹性基底
呼吸频率监测精度
误差:小于
2次/min
柔性好、重复性好 迟滞误差率较大 医疗保健、
运动健身、
职业健康




+抗电磁干扰
+结构简单
+成本低
+不受环境温度影响
-易受光源强度波动影响
聚合物
光纤[33]
光在弯曲部位时发生入射角突变,导致光线从纤芯向外部环境传播 塑料
薄片
最大弯曲灵敏度:
-5.76 dB/m
平均误差低 基底刚性大,舒适性差 医疗保健、
运动健身
聚甲基丙烯酸甲酯芯聚合物光纤[31] 光在缺口处发生泄漏,导致光线从纤芯向外部环境传播 纺织品/
服装
光强损耗度:提高到38.61%;呼吸频率监测精度误差:在1.2次/min内 灵敏度高、
精度高、制作
工艺简单
易受光纤距离
的影响
运动健身
聚甲基丙烯酸甲酯芯聚合物光纤[40] 利用光在光纤之间的耦合效应实现对外界应变压力检测 纺织品/服装/弹性带 呼吸频率监测精度
误差:不超过
2次/min
精度较高、稳定性较好 光纤输出光
强易受光源
强度波动的
影响
运动健身
[1] MASSARONI Carlo, NICOLO Andrea, LO PRESTI Daniela, et al. Contact-based methods for measuring respiratory rate[J]. Sensors (Basel), 2019. DOI:10.3390/s19040908.
[2] 周杨飞, 叶伟文, 王恋, 等. 呼吸气瓶内部可视化自动检测装置研究与开发[J]. 石油和化工设备, 2021, 24(1):70-72,75.
ZHOU Yangfei, YE Weiwen, WANG Lian, et al. Research and development of an internal visualization automatic detection device for breathing gas cyli-nders[J]. Petro & Chemical Equipment, 2021, 24 (1): 70-72,75.
[3] 范圣龙, 鲁子鹏, 黄祖博, 等. 基于温度传感器的可穿戴呼吸检测装置研究[J]. 传感器与微系统, 2023, 42(6):66-69.
FAN Shenglong, LU Zipeng, HUANG Zubo, et al. Research on wearable respiratory detection devices based on temperature sensors[J]. Transducer and Microsystem Technologies, 2023, 42 (6): 66-69.
[4] CHEN Ying, LIU Fei, LU Bingwei, et al. Skin-like hybrid integrated circuits conformal to face for continuous respiratory monitoring[J]. Advanced Electronic Materials, 2020. DOI:10.1002/aelm.202000145.
[5] LEVARTOVSKY Asaf, DAFNA Eliran, ZIGEL Yaniv, et al. Breathing and snoring sound characteristics during sleep in adults[J]. Journal of Clinical Sleep Medicine, 2016, 12(3): 375-384.
[6] MOCHALSKI Pawel, SHUSTER Gregory, LEJA Mareis, et al. Non-contact breath sampling for sensor-based breath analysis[J]. Journal of Breath Research, 2019. DOI:10.1088/1752-7163/ab0b8d.
[7] LIANG Qiancheng, XU Lisheng, BAO Nan, et al. Research on non-contact monitoring system for human physiological signal and body movement[J]. Biosensors (Basel), 2019. DOI: 10.3390/bios9020058.
[8] CHEN Liming, HU Kui, LU Mingyang, et al. Wearable sensors for breath monitoring based on water-based hexagonal boron nitride inks made with supramolecular functionalization[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202312621.
[9] JADHAV M R, WANKHEDE P R, SRIVASTAVA S, et al. Breath-based biosensors and system development for noninvasive detection of diabetes: a review[J]. Diabetes Metabolic Syndrome: Clinical Research Reviews, 2024. DOI:10.1016/j.dsx.2023.102931.
[10] 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
SUN Yue, FAN Jie, WANG Liang, et al. Research progress of wearable technology in textiles and apparels[J]. Journal of Textile Research, 2018, 39(12): 131-138.
[11] ZHAO Cong, LIU Dan, XU Gaixia, et al. Recent advances in fiber optic sensors for respiratory moni-toring[J]. Optical Fiber Technology, 2022. DOI:10.1016/j.yofte.2022.103000.
[12] 刘欣萍. 腹式呼吸养生功效的实验研究[D]. 扬州: 扬州大学,2022:5-16.
LIU Xinping. Experimental study on the health benefits of abdominal breathing[D]. Yangzhou: Yangzhou University, 2022:5-16.
[13] 姬军, 潘美玲, 沙杭, 等. 呼吸感应体积描记法校准方法在不同呼吸状态下的适用性[J]. 航天医学与医学工程, 2013, 26(1):43-46.
JI Jun, PAN Meiling, SHA Hang, et al. Applicability of the calibration method for respiratory induction plethysmography in different respiratory states[J]. Space Medicine & Medical Engineering, 2013, 26(1): 43-46.
[14] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177.
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177.
[15] NING Chuan, CHENG Renwei, JIANG Yang, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring[J]. ACS Nano, 2022, 16(2): 2811-2821.
[16] PARK Junyung, PARK Sangki, AHN Seongcheol, et al. Wearable strain sensor using conductive yarn sewed on clothing for human respiratory monitoring[J]. IEEE Sensors Journal, 2020, 20(21): 12628-12636.
[17] MASSARONI Carlo, TOCCO Joshua Di, LO PRESTI Daniela, et al. Smart textile based on piezoresistive sensing elements for respiratory monitoring[J]. IEEE Sensors Journal, 2019, 19(17): 7718-7725.
[18] NARANJO-HERNANDEZ David, TALAMINOS-BARROSO Alejandro, REINA-TOSINA Javier, et al. Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing[J]. Sensors (Basel), 2018. DOI:10.3390/s18072144.
[19] 王晨露, 马金星, 杨雅晴, 等. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(8):113-118.
WANG Chenlu, MA Jinxing, YANG Yaqing, et al. Strain sensing property and respiration monitoring of polyaniline-coated warp-knitted fabrics[J]. Journal of Textile Research, 2022, 43(8):113-118.
[20] 陈豪. 面向呼吸监测的柔性压电薄膜传感器设计及实现[D]. 西安: 西安电子科技大学,2022:25-39.
CHEN Hao. Design and implementation of a flexible piezoelectric thin film sensor for respiratory monito-ring[D]. Xi'an: Xidian University, 2022:25-39.
[21] GUO Jingjing, ZHAO Kangjun, ZHOU Bingqian, et al. Wearable and skin-mountable fiber-optic strain sensors interrogated by a free-running, dual-comb fiber laser[J]. Advanced Optical Materials, 2019. DOI:10.1002/adom.201900086.
[22] 翁顺, 张之越, 高珂, 等. 柔性压阻应变传感技术在结构健康监测领域的研究进展[J]. 建筑结构学报, 2024, 45(7):242-261.
WENG Shun, ZHANG Zhiyue, GAO Ke, et al. Research progress of flexible piezoresistive strain sensing technology in structural health monitoring[J]. Journal of Building Structures, 2024, 45(7):242-261.
[23] 孟子征, 刘莉, 何崟, 等. 基于柔性传感器的智能背心呼吸监测技术研究[J]. 北京服装学院学报(自然科学版), 2021, 41(4):36-41.
MENG Zizheng, LIU Li, HE Yin, et al. Respiration monitoring technology of smart vest based on flexible sensors[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2021, 41(4):36-41.
[24] 乔锋, 郝振宇, 崔译文, 等. 用于人体体征监测的高敏柔性光纤光栅应变传感器研究[J]. 数字制造科学, 2023, 21(1):26-29,80.
QIAO Feng, HAO Zhenyu, CUI Yiwen, et al. Research on high sensitivity flexible fiber Bragg grating strain sensor for human body sign monitoring[J]. Digital Manufacture Science, 2023, 21 (1): 26-29,80.
[25] 徐小强, 杜阳, 冒燕, 等. 光纤布拉格光栅柔性传感器研究进展[J]. 应用光学, 2021, 42(5):932-940.
XU Xiaoqiang, DU Yang, MAO Yan, et al. Research progress on fiber Bragg grating flexible sensors[J]. Journal of Applied Optics, 2021, 42 (5): 932-940.
[26] 张辉, 吕庆田, 张毅, 等. 光纤布拉格光栅(FBG)和分布式声波传感器(DAS)在地学中的应用进展及发展方向[J]. 地球物理学进展, 2023, 38(3): 1416-1454.
ZHANG Hui, LV Qingtian, ZHANG Yi, et al. Recent advances in geoscience using fiber Bragg grating (FBG) and distrusted acoustic sensing (DAS) and the road ahead[J]. Progress in Geophysics, 2023, 38(3): 1416-1454.
[27] ISSATAYEVA Aizhan, BEISENOVA Aidana, TOSI Dnaiele, et al. Fiber-optic based smart textiles for real-time monitoring of breathing rate[J]. Sensors (Basel), 2020. DOI: 10.3390/s20123408.
[28] LO PRESTI Daniela, SANTUCCI Francesca, MASSARONI Carlo, et al. A multi-point heart rate monitoring using a soft wearable system based on fiber optic technology[J]. Scientific Reports, 2021. DOI: 10.1038/s41598-021-00574-2.
[29] 张治胜, 万生鹏, 吕纬龙, 等. 基于光纤光栅的呼吸测量及分类研究[J]. 激光与光电子学进展, 2023, 60(11):338-343.
ZHANG Zhisheng, WAN Shengpeng, LV Weilong, et al. Research on respiratory measurement and classification based on fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2023, 60 (11): 338-343.
[30] 张诚, 温晓钰, 许君, 等. 智能服装呼吸监测光纤织物传感器[J]. 激光与光电子学进展, 2023, 60(13):52-59.
ZHANG Cheng, WEN Xiaoyu, XU Jun, et al. Respiratory monitoring fiber optic fabic sensor for smart clothing[J]. Laser & Optoelectronics Progress, 2023, 60(13):52-59.
[31] 张美玲, 赵美玲, 张诚, 等. 用于呼吸监测的光纤传感织物制备及其性能[J]. 纺织学报, 2023, 44(5):102-111.
ZHANG Meiling, ZHAO Meiling, ZHANG Cheng, et al. Fabrication and properties of optical fiber sensing fabrics for respiratory monitoring[J]. Journal of Textile Research, 2023, 44(5):102-111.
[32] AVELLAR Leticia, FRIZERA Anselmo, ROCON Eduardo, et al. Characterization and analysis of a POF sensor embedded in different materials: towards wearable systems for stiffness estimation[J]. Optics & Laser Technology, 2022. DOI: 10.1016/j.optlastec.2021.107504.
[33] 庞毅能. 基于SMS结构光纤传感器的人体生理参数监测[D]. 南昌: 南昌航空大学,2022:17-36.
PANG Yineng. Human physiological parameter monitoring based on SMS structured fiber optic sensors[D]. Nanchang: Nanchang Hangkong University,2022: 17-36.
[34] KREHEL Marek, SCHMID Michel, ROSSI Rene M, et al. An optical fibre-based sensor for respiratory monitoring[J]. Sensors (Basel), 2014, 14(7): 13088-13101.
[35] MOHD Arif Noor Azie Azura, BURHANUDDIN Dilla Durhya, SHAARI Sanbudin, et al. Bend loss fiber optics design based on sinusoidal and ellipse configurations[J]. Optica Applicata, 2021. DOI:10.37190/oa210301.
[36] WANG Yulin, LIU Bin, PANG Yineng, et al. Low-cost wearable sensor based on a D-shaped plastic optical fiber for respiration monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8.
[37] AITKULOV A, TOSI D. Optical fiber sensor based on plastic optical fiber and smartphone for measurement of the breathing rate[J]. IEEE Sensors Journal, 2019, 19(9): 3282-3287.
[38] AITKULOV Arman, TOSI Daniele. Optical fiber sensor based on plastic optical fiber and smartphone for measurement of the breathing rate[J]. IEEE Sensors Journal, 2019, 19(9): 3282-3287.
[39] BUNGE Christian Alexander, KALLWEIT Jan, COLAKOGLU Levent, et al. Analysis of fibre cross-coupling mechanisms in fibre-optical force sensors[J]. Sensors (Basel), 2021.DOI:10.3390/s2107.
[40] XU Jun, ZHOU Yucong, ZHANG Cheng, et al. Development and evaluation of a respiratory monitoring smart garment based on notched optical fiber sensing fabric[J]. IEEE Sensors Journal, 2022, 22(15): 14892-14902.
[41] FAN Wenjing, HE Qiang, MENG Keyu, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring[J]. Science Advances, 2020. DOI:10.1126/sciadv.aay2840.
[42] CHENG Baochang, WU Peiyi. Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities[J]. ACS Nano, 2021, 15(5): 8676-8685.
[43] LI Yang, DONG Bo, CHEN Enqing, et al. Breathing process monitoring with a biaxially oriented polypropylene film based fiber Fabry-Perot sensor[J]. Optics Communications, 2020. DOI: 10.1016/j.optcom.2020.126292.
[44] ZHAO Cong, LIU Dan, CAI Zhihao, et al. A wearable breath sensor based on fiber-tip microcantilever[J]. Biosensors, 2022.DOI:10.3390/bios12030168.
[45] NI Yimeng, ZANG Xuerui, YANG Yue, et al. Environmental stability stretchable organic hydrogel humidity sensor for respiratory monitoring with ultrahigh sensitivity[J]. Advanced Functional Materials, 2024.DOI: 10.1002/adfm.202402853.
[46] WICAKSONO Irmandy, TUCKER Carson I, SUN Tao, et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo[J]. NPJ Flexible Electronics, 2020, 4(1): 1-13.
[47] GUPTA Pranav, MOGHIMI Mohammad J, JEONG Yaesuk, et al. Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals[J]. NPJ Digital Medicine, 2020. DOI: 10.1038/s41746-020-0225-7.
[48] ZHANG Yuezhou. Breathing disorder detection using wearable electrocardiogram and oxygen saturation[C]// SenSys '18: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems. New York: Association for Computing Machinery, 2018: 313-314.
[49] HAN Liuyang, LIANG Weijin, XIE Qisen, et al. Health monitoring via heart, breath, and Korotkoff sounds by wearable piezoelectret patches[J]. Advanced Science, 2023. DOI:10.1002/advs.202301180.
[50] PURANIK K Anmol. Wearable device for Yogic breathing[C]// KANTHI M. 2019 Amity International Conference on Artificial Intelligence (AICAI). New York: IEEE, 2019: 605-610.
[51] PRIGENT G, AMININ K, RODRIGUES T, et al. Indirect estimation of breathing rate from heart rate monitoring system during running[J]. Sensors, 2021. DOI: 10.3390/s21165651.
[52] ELLOT Catherine A, HAMLIN Michae J, LIZAMORE Catherine A. Validity and reliability of the Hexoskin wearable biometric vest during maximal aerobic power testing in elite cyclists[J]. The Journal of Strength & Conditioning Research, 2019, 33(5): 1437-1444.
[53] GUO Shijie, MATSUO Kazuya, LIU Jinyue, et al. Unconstrained measurement of respiration motions of chest and abdomen using a tactile sensor sheet in supine position on bed[J]. Journal of Medical Devices, 2016. DOI:10.1115/1.4034465.
[54] HERNAEZ Miguel, ACEVEDO Beatriz, MAYES Andrew G, et al. High-performance optical fiber humidity sensor based on lossy mode resonance using a nanostructured polyethylenimine and graphene oxide coating[J]. Sensors and Actuators B: Chemical, 2019, 286: 408-414.
[55] IQBAL Talha, ELAHI Adnan, GANLY Sandra, et al. Photoplethysmography-based respiratory rate estimation algorithm for health monitoring applications[J]. Journal of Medical and Biological Engineering, 2022, 42(2): 242-252.
[56] WANG Ju. Surface plasmon resonance humidity sensor based on twisted long period fiber grating coated with tungsten disulfide film[J]. Optik, 2021. DOI: 10.1016/j.ijleo.2021.166616.
[57] SIGNORE Maria A, RESCIO Gabriele, FRANCIOSO Luca, et al. Aluminum nitride thin film piezoelectric pressure sensor for respiratory rate detection[J]. Sensors, 2024. DOI: 10.3390/s24072071.
[58] LIU Liangliang, MORHGAN Stephen P, CORREIA Ricardo, et al. A single-film fiber optical sensor for simultaneous measurement of carbon dioxide and relative humidity[J]. Optics & Laser Technology, 2022. DOI: 10.1016/j.optlastec.2021.107696.
[59] TOCCO Joshua Di, PRESTI Daniela Lo, ZALTIERI M artina, et al. A wearable system based on flexible sensors for unobtrusive respiratory monitoring in occupational settings[J]. IEEE Sensors Journal, 2021, 21(13): 14369-14378.
[1] 李露红, 罗天, 丛洪莲. 针织一体成形电容传感器设计及其性能[J]. 纺织学报, 2024, 45(10): 80-88.
[2] 罗梦颖, 陈慧君, 夏明, 王栋, 李沐芳. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15.
[3] 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17.
[4] 施楚, 李俊, 王云仪. 基于温度监测的糖尿病足预防性智能鞋袜研究进展[J]. 纺织学报, 2024, 45(07): 240-247.
[5] 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34.
[6] 王宁, 龚维, 王宏志. 面向可穿戴电子产品的自供能摩擦电纺织品研究进展[J]. 纺织学报, 2024, 45(04): 41-49.
[7] 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(03): 236-243.
[8] 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133.
[9] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[10] 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231.
[11] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[12] 张美玲, 赵美玲, 张诚, 李志辉, 孙政, 赵晓雪, 苗长云, 王瑞, 王占刚. 用于呼吸监测的光纤传感织物制备及其性能[J]. 纺织学报, 2023, 44(05): 102-111.
[13] 唐丽琴, 李彦, 毛吉富, 汪军, 王璐. 检测汗液用可穿戴电化学传感器的研究进展[J]. 纺织学报, 2023, 44(03): 221-230.
[14] 李沐芳, 陈佳鑫, 曾凡佳, 王栋. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10): 65-70.
[15] 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205.
Viewed
Full text
56
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 13 0 0 43

  From Others local
  Times 18 38
  Rate 32% 68%

Abstract
121
Just accepted Online first Issue
0 0 121
  From Others local
  Times 89 32
  Rate 74% 26%

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!