纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 10-19.doi: 10.13475/j.fzxb.20240907801
詹克静1, 杨鑫1, 张应龙1, 张昕1,2, 潘志娟1,2()
ZHAN Kejing1, YANG Xin1, ZHANG Yinglong1, ZHANG Xin1,2, PAN Zhijuan1,2()
摘要:
再生丝素蛋白(RSF)微介观尺度的重构,是提升RSF材料力学性能的有效手段。为大力拓展RSF在生物医用领域的应用,通过模拟蚕腺体内的微环境,利用盐离子体系诱导RSF溶液产生液-液相分离效应,实现高浓度RSF水溶液的稳定自凝聚及微介观结构调控,并将多种几何尺寸的丝素纳米原纤(SFNF)作为RSF材料的增强体,利用静电纺丝法最终获得力学增强型自凝聚RSF微纳米纤维膜。结果表明:盐离子体系中,柠檬酸钠对RSF液-液相分离的诱导效果最强,RSF溶液的β-折叠结构含量由初始33.8%增加至51.1%,RSF溶液整体黏度提升,可纺性提高;SFNF有效改善了RSF微纳米纤维膜的力学性能,断裂伸长率从2.06%提升至3.54%,断裂强度从0.46 MPa提升至0.49 MPa;此外,纤维膜的溶血率为2.58%,具有良好的血液相容性,在创面敷料领域具有潜在的应用前景。
中图分类号:
[1] |
KORAKAS N, VURRO D, TSILIPAKOS O, et al. Photo-elasticity of silk fibroin harnessing whispering gallery modes[J]. Scientific Reports, 2023, 13(1):9750-9759.
doi: 10.1038/s41598-023-36400-0 pmid: 37328482 |
[2] | YANG L, WANG X, XIONG M, et al. Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering[J]. Scientific Reports, 2024, 14(1): 3942-3942. |
[3] |
YUE X Y, WANG Z K, SHI H, et al. Silk fibroin-based piezoelectric nanofibrous scaffolds for rapid wound healing[J]. Biomaterials Science, 2023, 11(15): 5232-5239.
doi: 10.1039/d3bm00308f pmid: 37338183 |
[4] | TANAKA E, AVTEMIZ D, TARA S, et al. Fabrication and characterization of elastin-crosslinked silk fibroin material for tissue engineering[J]. Kobunshi Ronbunshu, 2018, 75(1): 80-83. |
[5] |
AGOSTINACCHIO F, MANIGLIO D, CALLONE E, et al. A novel and selective silk fibroin fragmentation method[J]. Soft Matter, 2021, 17(28): 6863-6872.
doi: 10.1039/d1sm00566a pmid: 34227640 |
[6] | FAN S N, CHEN J, GU Z H, et al. Design and fabrication of silk fibroin-based fibers and functional materials[J]. Acta Polymerica Sinica, 2021, 52(1): 29-46. |
[7] | 杨海贞, 魏肃桀, 马闯, 等. 静电纺丝丝素蛋白基纳米纤维在医学领域的应用[J]. 印染, 2023, 49(12): 76-81. |
YANG Haizhen, WEI Sujie, MA Chuang, et al. Application of electrospinning fibroin-based nanofibers in medical field[J]. China Dyeing & Finishing, 2023, 49(12): 76-81. | |
[8] | ZHU J C, WANG H, WU CX, et al. Tailoring silk fibroin fibrous architecture by a high-yield electrospinning method for fast wound healing possibilities[J]. Biotechnology and Bioengineering, 2024, 121(10): 3224-3238. |
[9] | ZHANG X, ZHU D, CHENG Y, et al. Preparation and biocompatibility characterization of regenerated silk fibroin films[J]. Journal of Macromolecular Science Part B-Physics, 2021, 60(8): 603-615. |
[10] | 邵倩倩, 巫甜甜, 胡洪涛, 等. 静电纺纳米纤维敷料在创伤修复中的应用研究进展[J]. 广州化工, 2019, 47(24): 41-43. |
SHAO Qianqian, WU Tiantian, HU Hongtao, et al. Research progress of application of electrostatic spinning nanofiber dressing in wound repair[J]. Guangzhou Chemical Industry, 2019, 47(24): 41-43. | |
[11] | 向静, 李玲婕, 李雨舟, 等. 静电纺丝丝素蛋白纳米纤维在骨组织工程中的运用[J]. 中国医疗美容, 2021, 11(4): 124-128. |
XIANG Jing, LI Lingjie, LI Yuzhou, et al. Application of electrospinning fibroin nanofibers in bone tissue engineering[J]. Chinese Medical Cosmetology, 2021, 11(4): 124-128. | |
[12] |
李莹莹, 王昉, 刘其春, 等. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242 |
LI Yingying, WANG Fang, LIU Qichun, et al. Research progress of silk fibroin protein and its composite materials[J]. Journal of Materials Engineering, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242 |
|
[13] | WANG X, QIU W, LIU X Y. From mesoscopic reconstruction to flexible meso-electronics based on nucleation control refolding rerouting of silk fibroin materials[J]. Journal of Crystal Growth, 2023, 603: 4-12. |
[14] | LIU Q C, WANG F, GU Z G, et al. Exploring the structural transformation mechanism of chinese and thailand silk fibroin fibers and formic-acid fabricated silk films[J]. International Journal of Molecular Sciences, 2018, 19(11):2-16. |
[15] | SUN X M, LIANG H, WANG H Y, et al. Silk fibroin/polyvinyl alcohol composite film loaded with antibacterial AgNP/polydopamine-modified montmorillonite, characterization and antibacterial properties[J]. International Journal of Biological Macromolecules, 2023.DOI: 10.1016/j.ijbiomac.2023.126368. |
[16] | MENG Q J, ZHAO L Y, GENG Y, et al. A one-pot approach to prepare stretchable and conductive regenerated silk fibroin/CNT films as multifunctional sensors[J]. Nanoscale, 2023, 15(21): 9403-9412. |
[17] | WANG X, QIU W, LIU X Y. From mesoscopic reconstruction to flexible meso-electronics based on nucleation control refolding rerouting of silk fibroin materials[J]. Journal of Crystal Growth, 2023.DOI: 10.1016/j.jcrysgro.2022.126977. |
[18] | SONG K, WANG Y J, DONG W J, et al. Decoding silkworm spinning programmed by pH and metal ions[J]. Science Bulletin, 2024, 69(6): 792-802. |
[19] | LIU Q S, WANG X, ZHOU Y F, et al. Dynamic changes and characterization of the metal ions in the silk glands and silk fibers of silkworm[J]. International Journal of Molecular Sciences, 2023, 24(7): 2-12. |
[20] |
KRONQVIST N, OTIKOVS M, CHMYROV V, et al. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation[J]. Nature Communications, 2014, 5: 3254-3262.
doi: 10.1038/ncomms4254 pmid: 24510122 |
[21] | ZHOU P, XING R R, LI Q, et al. Steering phase-separated droplets to control fibrillar network evolution of supramolecular peptide hydrogels[J]. Matter, 2023, 6(6): 1945-1963. |
[22] | ZHANG X, PAN Z. Rheological behavior of regenerated silk fibroin/polyvinyl alcohol blended solutions in steady and dynamic state and the effect of temperature[J]. Journal of Materials Science, 2020, 55(31): 15350-15363. |
[23] |
PARTLOW B P, TABATABAI A P, LEISK G G, et al. Silk fibroin degradation related to rheological and mechanical properties[J]. Macromolecular Bioscience, 2016, 16(5): 666-675.
doi: 10.1002/mabi.201500370 pmid: 26756449 |
[24] | 周凤娟, 许时婴, 杨瑞金, 等. 可溶性丝素蛋白的流变性质和胶凝性质[J]. 食品科学, 2007(12): 58-62. |
ZHOU Fengjuan, XU Shiying, YANG Ruijin, et al. Rheological and gelling properties of soluble silk fibroin protein[J]. Food Science, 2007(12): 58-62. | |
[25] | WANG H Y, ZHOU S F, ZHANG M, et al. The post-processing temperature or humidity can importantly control the secondary structure and characteristics of silk fibroin films[J]. Journal of Biomedical Materials Research Part A, 2022, 110(4): 827-837. |
[26] | 徐梦婷, 马艳, 刘祖兰, 等. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184. |
XU Mengting, MA Yan, LIU Zulan, et al. Effect of post-treatment on the properties of electrospinning fiber film[J]. Materials Review, 2021, 35(14): 14180-14184. | |
[27] | SUN L, LI X, YANG T, et al. Construction of spider silk protein small-caliber tissue engineering vascular grafts based on dynamic culture and its performance evaluation[J]. Journal of Biomedical Materials Research Part A, 2023, 111(1): 71-87. |
[1] | 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112. |
[2] | 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25. |
[3] | 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51. |
[4] | 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8. |
[5] | 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32. |
[6] | 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40. |
[7] | 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8. |
[8] | 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24. |
[9] | 刘健, 王程皓, 董守骏, 刘泳汝. 半封闭自由表面式静电纺丝喷头设计与优化[J]. 纺织学报, 2024, 45(11): 215-225. |
[10] | 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243. |
[11] | 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9. |
[12] | 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45. |
[13] | 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234. |
[14] | 刘健, 董守骏, 王程皓, 刘泳汝, 潘山山, 尹兆松. 花瓣状多尖端静电纺丝喷头的电场模拟及优化[J]. 纺织学报, 2024, 45(10): 191-199. |
[15] | 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|