纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 10-19.doi: 10.13475/j.fzxb.20240907801

• 纤维材料 • 上一篇    下一篇

自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强

詹克静1, 杨鑫1, 张应龙1, 张昕1,2, 潘志娟1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2024-09-29 修回日期:2024-10-29 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 潘志娟(1967—),女,教授,博士。主要研究方向为新型纺织材料及产品开发。E-mail: zhjpan@suda.edu.cn
  • 作者简介:詹克静(2001—),女,硕士生。主要研究方向为蛋白微纳米纤维膜的制备及性能。
  • 基金资助:
    中国博士后科学基金项目(2024M752322);江苏省卓越博士后计划项目(2023ZB420);江苏省丝绸工程重点实验室开放课题资助项目(KJS2314)

Fabrication and mechanical reinforcement of self-coagulated regenerated silk fibroin micro-nanofiber membranes

ZHAN Kejing1, YANG Xin1, ZHANG Yinglong1, ZHANG Xin1,2, PAN Zhijuan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2024-09-29 Revised:2024-10-29 Published:2025-02-15 Online:2025-03-04

摘要:

再生丝素蛋白(RSF)微介观尺度的重构,是提升RSF材料力学性能的有效手段。为大力拓展RSF在生物医用领域的应用,通过模拟蚕腺体内的微环境,利用盐离子体系诱导RSF溶液产生液-液相分离效应,实现高浓度RSF水溶液的稳定自凝聚及微介观结构调控,并将多种几何尺寸的丝素纳米原纤(SFNF)作为RSF材料的增强体,利用静电纺丝法最终获得力学增强型自凝聚RSF微纳米纤维膜。结果表明:盐离子体系中,柠檬酸钠对RSF液-液相分离的诱导效果最强,RSF溶液的β-折叠结构含量由初始33.8%增加至51.1%,RSF溶液整体黏度提升,可纺性提高;SFNF有效改善了RSF微纳米纤维膜的力学性能,断裂伸长率从2.06%提升至3.54%,断裂强度从0.46 MPa提升至0.49 MPa;此外,纤维膜的溶血率为2.58%,具有良好的血液相容性,在创面敷料领域具有潜在的应用前景。

关键词: 再生丝素蛋白, 自凝聚, 静电纺丝, 微纳米纤维, 力学增强, 生物医用材料

Abstract:

Objective The dissolution of silk fibroin protein disrupts its multi-order structure, leading to a decline in the mechanical properties of fibers, which in turn limits the application of micro-nano silk fibroin fiber membranes. By reconstructing the micro-mesoscopic structure of regenerated silk fibroin (RSF), this research aims to enhance the mechanical properties of RSF materials, thereby expanding their potential applications in the biomedical field.

Method In this study, we simulated the microenvironment within silkworm glands and induced liquid-liquid phase separation in the regenerated silk fibroin (RSF) solution through a salt ion system. Silk fibroin nanofibri-llars (SFNF) of various geometric dimensions were employed as reinforcements for the RSF material. By employing electrospinning, we fabricated mechanically enhanced, self-coagulating RSF micro-nano fiber membranes.

Results Sodium citrate (Na3Citrate) solution was found the optimal system for inducing self-coagulation of RSF aqueous solutions. When the concentration of Na3Citrate exceeded 0.6 mol/L and the concentration of the RSF solution was above 2%, the RSF aqueous solution began to undergo self-coagulation. This process intensified with increasing sodium citrate concentration. However, when the concentrations of both Na3Citrate and RSF were excessively high (i.e., RSF above 16%, Na3Citrate above 1.2 mol/L), the degree of self-coagulation became excessive, leading to the rapid formation of flaky precipitates within 20 minutes of solution preparation. With increasing concentration of Na3Citrate, the entanglement of RSF macromolecular chains became more compact, leading to an increase in the β-sheet structure of the RSF solution from the initial 33.8% to 51.1%. This enhancement in internal flow resistance resulted in increased viscosity of the RSF solution, thereby improving its spinnability. At a Na3Citrate concentration of 1.0 mol/L, a voltage of 22 kV, a flow rate of 0.2 mL/h, and a spinning distance of 16 cm, the fiber diameter and coefficient of variation (CV) were minimized, suggesting good spinning stability and a high specific surface area of the fibers. After incorporating SFNF of varying geometric dimensions, the spinning solution retained good spinnability. Compared to the RSF fiber membrane, the mechanical properties of the RSF-SFNF micro-nano fiber membrane were significantly enhanced. The tensile strength of RSF-SFNF130 was increased from 0.46 MPa to 0.49 MPa, and the elongation at break of SF-SFNF100 was improved from 2.06% to 3.54%. The ethanol treatment caused no significant changes on the surface of the fiber membrane. The content of β-sheet structure within the fiber membrane was increased to 50.0%, which ameliorated the solubility issue of RSF fiber membranes in water. The hemolysis rate was 2.58%, demonstrating good blood compatibility.

Conclusion Within the salt ion system, Na3Citrate exhibits the most potent induction effect on the liquid-liquid phase separation of RSF. The β-sheet structure of the RSF solution increases from an initial 33.8% to 51.1%, which correspondingly enhances the overall viscosity and spinnability of the RSF solution. The incorporation of SFNF significantly improves the mechanical properties of RSF micro-nanofiber membranes, where the elongation at break is increased from 2.06% to 3.54%, and the tensile strength is elevated from 0.46 MPa to 0.49 MPa. Furthermore, the fiber membrane demonstrates good blood compatibility with a hemolysis rate of 2.58%, indicating promising potential for application in the field of wound dressing.

Key words: regenerated silk fibroin, self-coagulation, electrospinning, micro-nanofiber, mechanical reinforcement, biomedical material

中图分类号: 

  • TS104.7

图1

SFNF 的光学显微镜照片"

表1

正交试验因素水平表"

试验
编号
Na3Citrate浓度/
(mol·L-1)
纺丝电压/
kV
流速/
(mL·h-1)
接收距
离/cm
1# 1.0 20 0.3 15
2# 1.0 22 0.2 16
3# 1.0 24 0.4 14
4# 0.6 20 0.2 14
5# 0.6 22 0.4 15
6# 0.6 24 0.3 16
7# 0.8 20 0.4 16
8# 0.8 22 0.3 14
9# 0.8 24 0.2 15

图2

不同盐离子体系下RSF溶液的自凝聚效果"

图3

RSF-Citrate溶液的液-液相分离图片"

图4

发生的液-液相分离的RSF-Citrate下层溶液的光学显微镜照片"

图5

RSF-Citrate混合溶液液-液相分离图谱"

图6

RSF-Citrate溶液的剪切速率-黏度关系曲线"

图7

RSF-Citrate样品的红外光谱图和二级结构含量变化图"

图8

正交试验纺制的RSF微纳米纤维膜的SEM照片"

表2

第2#、3#组试验下RSF微纳米纤维直径及其CV值"

试样
编号
Na3 Citrate
浓度/
(mol·L-1)
电压/
kV
流速/
(mL·h-1)
接收
距离/
cm
纤维
直径/
μm
CV
值/%
2# 1.0 22 0.2 16 1.004±0.172 4 0.17
3# 1.0 24 0.4 14 1.007±0.192 3 0.19

图9

自凝聚RSF/SFNF微纳米纤维膜的SEM照片"

图10

RSF与RSF/SFNF纤维膜应力-应变曲线及拉伸性能"

图11

乙醇处理前后纤维膜的SEM照片"

图12

纤维膜经乙醇处理前后的傅里叶红外吸收光谱图和二次结构含量变化"

表3

纤维膜的溶血试验结果"

材料 吸光度值 吸光度均值 溶血率/
%
1 2 3
纤维膜 0.01 0.0102 0.0168 0.0120±0.0050 2.5849
阴性对照 0.0037 0.0038 0.0036 0.0037±0.0001
阳性对照 0.3128 0.3256 0.3707 0.3360±0.0350
[1] KORAKAS N, VURRO D, TSILIPAKOS O, et al. Photo-elasticity of silk fibroin harnessing whispering gallery modes[J]. Scientific Reports, 2023, 13(1):9750-9759.
doi: 10.1038/s41598-023-36400-0 pmid: 37328482
[2] YANG L, WANG X, XIONG M, et al. Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering[J]. Scientific Reports, 2024, 14(1): 3942-3942.
[3] YUE X Y, WANG Z K, SHI H, et al. Silk fibroin-based piezoelectric nanofibrous scaffolds for rapid wound healing[J]. Biomaterials Science, 2023, 11(15): 5232-5239.
doi: 10.1039/d3bm00308f pmid: 37338183
[4] TANAKA E, AVTEMIZ D, TARA S, et al. Fabrication and characterization of elastin-crosslinked silk fibroin material for tissue engineering[J]. Kobunshi Ronbunshu, 2018, 75(1): 80-83.
[5] AGOSTINACCHIO F, MANIGLIO D, CALLONE E, et al. A novel and selective silk fibroin fragmentation method[J]. Soft Matter, 2021, 17(28): 6863-6872.
doi: 10.1039/d1sm00566a pmid: 34227640
[6] FAN S N, CHEN J, GU Z H, et al. Design and fabrication of silk fibroin-based fibers and functional materials[J]. Acta Polymerica Sinica, 2021, 52(1): 29-46.
[7] 杨海贞, 魏肃桀, 马闯, 等. 静电纺丝丝素蛋白基纳米纤维在医学领域的应用[J]. 印染, 2023, 49(12): 76-81.
YANG Haizhen, WEI Sujie, MA Chuang, et al. Application of electrospinning fibroin-based nanofibers in medical field[J]. China Dyeing & Finishing, 2023, 49(12): 76-81.
[8] ZHU J C, WANG H, WU CX, et al. Tailoring silk fibroin fibrous architecture by a high-yield electrospinning method for fast wound healing possibilities[J]. Biotechnology and Bioengineering, 2024, 121(10): 3224-3238.
[9] ZHANG X, ZHU D, CHENG Y, et al. Preparation and biocompatibility characterization of regenerated silk fibroin films[J]. Journal of Macromolecular Science Part B-Physics, 2021, 60(8): 603-615.
[10] 邵倩倩, 巫甜甜, 胡洪涛, 等. 静电纺纳米纤维敷料在创伤修复中的应用研究进展[J]. 广州化工, 2019, 47(24): 41-43.
SHAO Qianqian, WU Tiantian, HU Hongtao, et al. Research progress of application of electrostatic spinning nanofiber dressing in wound repair[J]. Guangzhou Chemical Industry, 2019, 47(24): 41-43.
[11] 向静, 李玲婕, 李雨舟, 等. 静电纺丝丝素蛋白纳米纤维在骨组织工程中的运用[J]. 中国医疗美容, 2021, 11(4): 124-128.
XIANG Jing, LI Lingjie, LI Yuzhou, et al. Application of electrospinning fibroin nanofibers in bone tissue engineering[J]. Chinese Medical Cosmetology, 2021, 11(4): 124-128.
[12] 李莹莹, 王昉, 刘其春, 等. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242
LI Yingying, WANG Fang, LIU Qichun, et al. Research progress of silk fibroin protein and its composite materials[J]. Journal of Materials Engineering, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242
[13] WANG X, QIU W, LIU X Y. From mesoscopic reconstruction to flexible meso-electronics based on nucleation control refolding rerouting of silk fibroin materials[J]. Journal of Crystal Growth, 2023, 603: 4-12.
[14] LIU Q C, WANG F, GU Z G, et al. Exploring the structural transformation mechanism of chinese and thailand silk fibroin fibers and formic-acid fabricated silk films[J]. International Journal of Molecular Sciences, 2018, 19(11):2-16.
[15] SUN X M, LIANG H, WANG H Y, et al. Silk fibroin/polyvinyl alcohol composite film loaded with antibacterial AgNP/polydopamine-modified montmorillonite, characterization and antibacterial properties[J]. International Journal of Biological Macromolecules, 2023.DOI: 10.1016/j.ijbiomac.2023.126368.
[16] MENG Q J, ZHAO L Y, GENG Y, et al. A one-pot approach to prepare stretchable and conductive regenerated silk fibroin/CNT films as multifunctional sensors[J]. Nanoscale, 2023, 15(21): 9403-9412.
[17] WANG X, QIU W, LIU X Y. From mesoscopic reconstruction to flexible meso-electronics based on nucleation control refolding rerouting of silk fibroin materials[J]. Journal of Crystal Growth, 2023.DOI: 10.1016/j.jcrysgro.2022.126977.
[18] SONG K, WANG Y J, DONG W J, et al. Decoding silkworm spinning programmed by pH and metal ions[J]. Science Bulletin, 2024, 69(6): 792-802.
[19] LIU Q S, WANG X, ZHOU Y F, et al. Dynamic changes and characterization of the metal ions in the silk glands and silk fibers of silkworm[J]. International Journal of Molecular Sciences, 2023, 24(7): 2-12.
[20] KRONQVIST N, OTIKOVS M, CHMYROV V, et al. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation[J]. Nature Communications, 2014, 5: 3254-3262.
doi: 10.1038/ncomms4254 pmid: 24510122
[21] ZHOU P, XING R R, LI Q, et al. Steering phase-separated droplets to control fibrillar network evolution of supramolecular peptide hydrogels[J]. Matter, 2023, 6(6): 1945-1963.
[22] ZHANG X, PAN Z. Rheological behavior of regenerated silk fibroin/polyvinyl alcohol blended solutions in steady and dynamic state and the effect of temperature[J]. Journal of Materials Science, 2020, 55(31): 15350-15363.
[23] PARTLOW B P, TABATABAI A P, LEISK G G, et al. Silk fibroin degradation related to rheological and mechanical properties[J]. Macromolecular Bioscience, 2016, 16(5): 666-675.
doi: 10.1002/mabi.201500370 pmid: 26756449
[24] 周凤娟, 许时婴, 杨瑞金, 等. 可溶性丝素蛋白的流变性质和胶凝性质[J]. 食品科学, 2007(12): 58-62.
ZHOU Fengjuan, XU Shiying, YANG Ruijin, et al. Rheological and gelling properties of soluble silk fibroin protein[J]. Food Science, 2007(12): 58-62.
[25] WANG H Y, ZHOU S F, ZHANG M, et al. The post-processing temperature or humidity can importantly control the secondary structure and characteristics of silk fibroin films[J]. Journal of Biomedical Materials Research Part A, 2022, 110(4): 827-837.
[26] 徐梦婷, 马艳, 刘祖兰, 等. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
XU Mengting, MA Yan, LIU Zulan, et al. Effect of post-treatment on the properties of electrospinning fiber film[J]. Materials Review, 2021, 35(14): 14180-14184.
[27] SUN L, LI X, YANG T, et al. Construction of spider silk protein small-caliber tissue engineering vascular grafts based on dynamic culture and its performance evaluation[J]. Journal of Biomedical Materials Research Part A, 2023, 111(1): 71-87.
[1] 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112.
[2] 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25.
[3] 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51.
[4] 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8.
[5] 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32.
[6] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[7] 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8.
[8] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[9] 刘健, 王程皓, 董守骏, 刘泳汝. 半封闭自由表面式静电纺丝喷头设计与优化[J]. 纺织学报, 2024, 45(11): 215-225.
[10] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[11] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[12] 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45.
[13] 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234.
[14] 刘健, 董守骏, 王程皓, 刘泳汝, 潘山山, 尹兆松. 花瓣状多尖端静电纺丝喷头的电场模拟及优化[J]. 纺织学报, 2024, 45(10): 191-199.
[15] 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207.
Viewed
Full text
84
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 19 0 0 65

  From Others local
  Times 17 67
  Rate 20% 80%

Abstract
108
Just accepted Online first Issue
0 0 108
  From Others local
  Times 44 64
  Rate 41% 59%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!