纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 122-129.doi: 10.13475/j.fzxb.20240905301

• 纺织工程 • 上一篇    下一篇

异形针织间隔结构界面太阳能蒸汽发生器的制备及其性能

齐路漫1,2, 孟家光1,2, 余灵婕1,2, 支超1,2()   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
  • 收稿日期:2024-09-25 修回日期:2024-11-03 出版日期:2025-02-15 发布日期:2025-03-04
  • 通讯作者: 支超(1986—),男,副教授,博士。主要研究方向为智能纺织品设计与性能优化、多相复合材料多场耦合仿真等。E-mail:zhichao@xpu.edu.cn
  • 作者简介:齐路漫(1999—),女,硕士生。主要研究方向为太阳能水蒸发。
    第一联系人:

    说 明:本文入围中国纺织工程学会第25届陈维稷论文卓越行动计划

  • 基金资助:
    国家自然科学基金项目(51903199);陕西省重点研发计划项目(2023-YBGY-490);中国纺织工业联合会应用基础研究计划项目(J202405);陕西省创新能力支撑计划项目(2022KJXX-40);陕西省教育厅科研计划项目(22JK0394)

Preparation and properties of interfacial solar steam generators with special-shaped spacer knitted structures

QI Luman1,2, MENG Jiaguang1,2, YU Lingjie1,2, ZHI Chao1,2()   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an, Shaanxi 710048, China
  • Received:2024-09-25 Revised:2024-11-03 Published:2025-02-15 Online:2025-03-04

摘要:

为进一步提升界面太阳能蒸汽发生器的蒸发性能,基于针织间隔织物的可设计性,使用石墨烯/碳纳米管包覆涤纶复合纤维编织光热蒸发层,涤纶长丝编织漂浮层,利用二维编织技术制备的间隔纱将光热蒸发层和漂浮层连接,制备出一种自漂浮纬编异形间隔织物界面太阳能蒸汽发生器,并对其输水性能、光吸收性能、蒸发性能、废水处理性能等进行了研究。结果表明:间隔纱的液体传输速度为1 cm/min,能够实现水分的快速传输;制备的蒸发器可以在无光照条件下漂浮900 s,蒸发器在紫外-可见-近红外光区域的光吸收率高达96%,蒸发速率在1 kW/m2光照条件下为1.80 kg/(m2·h),蒸发效率高达95.73%,即使在质量分数为15%的氯化钠溶液中蒸发效率依然可以达到1.51 kg/(m2·h)。

关键词: 间隔织物, 光热转化, 太阳能蒸发, 海水淡化, 废水净化

Abstract:

Objective The interface solar steam generator (ISSG) has received widespread attention as a novel, sustainable water resource acquisition method with low energy consumption, low cost, and environmental friendliness. Among them, the ISSG based on textile production technologies such as weaving, knitting, and non-woven offers advantages of low cost and industrialization readiness. By designing a special knitted spacer structure to integrate the photothermal evaporation layer, water supply structure, and floating layer through weaving in 2-D or 3-D forms, it is expected to achieve a good combination of high-efficiency light absorption and conversion, rapid and stable water supply, and excellent thermal management, thereby effectively enhancing the evaporation performance of the ISSG.

Method Based on the designability of knitted spacer fabrics, the photothermal evaporation layer was knitted with polyester composite fibers covered by graphene/carbon nanotubes, and the floating layer was woven with polyester filament. The spacer yarn prepared by two-dimensional knitting technology on KBL-24-2-90 high-speed knitting machine was used to connect the photothermal evaporation layer and the floating layer. A self-floating weft knitted profiled spacer fabric interface solar steam generator (SWF) was prepared on MN-TYPE knitting machine generator. The water transfer performance, light absorption performance, evaporation performance and wastewater treatment performance were studied and analyzed.

Results Through the water transfer experiment of the spacer yarn prepared by two-dimensional knitting technology, it was found that the liquid transmission speed of the spacer yarn was 1 cm/min, and the results showed that the spacer yarn could achieve rapid moisture transfer. The SWF evaporator was able to run without light for 900 seconds, and the light absorption rate in the UV-visible to near-infrared light region was as high as 96%. The SWF evaporation performance was tested using a simulated light source consisting of an AM 1.5 filter and an xenon lamp, with an evaporation rate of 1.80 kg/(m2·h) at a light intensity of 1 kW/m2, and an evaporation efficiency of 95.73%. The SWF was tested for cyclic stability in a 3.5% sodium chloride solution, and the test results showed that SWF has good cyclic stability, with no significant difference in evaporation rate after 10 uses, and an evaporation efficiency was 1.51 kg/(m2·h) even in a 15% sodium chloride solution. The evaporation performance of dye solutions containing methylene blue solution and methyl orange solution was tested, and there was a clear color change in the methylene blue solution, methyl orange solution, and the steam water collected during evaporation. The color of the steam water collected was almost transparent.

Conclusion Using the 3-D knitting technology, a solar steam generator SWF made from self-floating weft knitted special-shaped spacer fabric interface was prepared. The test results show that the special-shaped solar evaporator has highly efficient light absorption performance, self-floating performance, high efficiency water supply performance, and can achieve highly efficient solar photothermal conversion, which is applicable to seawater desalination, wastewater treatment and other areas. The novelty of this study lies in the new preparation idea and development of fabric-based solar evaporators.

Key words: spacer fabric, light and heat conversion, solar evaporation, seawater desalination, wastewater purification

中图分类号: 

  • TS184.4

图1

蒸汽水收集装置及SWF示意图和实物图"

图2

间隔纱微观形貌"

图3

SWF蒸发器光热蒸发层表面形貌照片"

图4

SWF在无光照条件下的漂浮性能"

图5

间隔纱的芯吸性能"

图6

SWF样品底部接触相同墨水溶液后光热蒸发层表面润湿图像"

图7

SWF的水接触角图像"

图8

不同SWF样品在50%应变下的循环压缩性能"

图9

SWF-1和SWF-2的紫外-可见-近红外吸收光谱"

图10

SWF样品干态下光热蒸发层表面温度变化"

图11

SWF样品湿态下光热蒸发层表面温度变化"

图12

不同样品在1 kW/m2 光照下水的质量随时间变化以及对应的蒸发速率和蒸发效率"

图13

亚甲基蓝溶液与甲基橙溶液的质量随时间的变化"

图14

SWF-2在不同盐质量分数下的质量变化及在3.5%的氯化钠溶液中的循环蒸发性能"

[1] 杜恒, 方剑, 葛灿, 等. 界面光热水蒸发用碳基纤维材料的研究进展[J]. 复合材料学报, 2023, 40(6): 3115-3124.
DU Heng, FANG Jian, GE Can, et al. Research progress in carbon-based fibrous materials for interfacial photothermal steam generation[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3115-3124.
[2] MA H D, YU L J, LI Z Z, et al. A lotus seedpods-inspired interfacial solar steam generator with outstanding salt tolerance and mechanical properties for efficient and stable seawater desalination[J]. Small, 2023.DOI: 10.1002/smll.202304877.
[3] 胡子艳, 张林江, 白波, 等. PDA@PPHF太阳能驱动界面蒸发性能及水质净化研究[J]. 现代化工, 2022, 42(3): 149-153,158.
doi: 10.16606/j.cnki.issn0253-4320.2022.03.030
HU Ziyan, ZHANG Linjiang, BAI Bo, et al. Interfacial evaporation and water purification performances of PDA@PPHF driven by solar energy[J]. Modern Chemical Industry, 2022, 42(3): 149-153,158.
doi: 10.16606/j.cnki.issn0253-4320.2022.03.030
[4] TIAN Y K, SONG R, LI Y J, et al. Biomimetic structural design of fabric for low-cost, scalable, and highly efficient off-grid solar-driven water purifica-tion[J]. Advanced Functional Materials, 2024.DOI: 10.1002/adfm.202309470.
[5] XU D, GE C, CHEN Z, et al. Tree-inspired braiding fibrous frameworks enabling high-efficiency and salt-rejecting solar evaporation[J]. Journal of Materials Chemistry A, 2023, 11(25): 13510-13518.
[6] LI X L, ZHU M, ZHANG X L, et al. Polypyrrole solar evaporator designed based on the interface evaporation principle and its application in sewage treatment[J]. Colloids and Surfaces A(Physicochemical and Engineering Aspects), 2023. DOI:10.1016/j.colsurfa.2022.130406.
[7] 胡颖, 安显慧, 钱学仁. 聚吡咯/纸浆纤维复合光热纸的制备及其太阳能驱动界面水蒸发研究[J]. 中国造纸, 2022, 41(11): 113-123.
HU Ying, AN Xianhui, QIAN Xueren. Study on preparation of polypyrrole/pulp fiber composite photothermal paper and its solar-driven interfacial water evaporation[J]. China Pulp & Paper, 2022, 41(11): 113-123.
[8] ZHANG X Y, REN L P, XU J, et al. Magnetically driven tunable 3D Structured Fe3O4 vertical array for high-performance solar steam generation[J]. Small, 2022. DOI:10.1002/smll.202105198.
[9] LEI Z W, ZHU S F, SUN X T, et al. A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalina-tion[J]. Advanced Functional Materials, 2022.DOI: 10.1002/adfm.202205790.
[10] ZHAO L M, ZHANG L W, YANG Z P, et al. Twisted integration of high-efficiency photothermal/water-transported yarns for boosting solar-powered fabric evaporator[J]. Chemical Engineering Journal, 2024. DOI:10.1016/j.cej.2024.151605.
[11] LI Y P, WANG R, ZHANG L, et al. Scalable fabric-based solar steam generator[J]. Advanced Functional Materials, 2024. DOI:10.1002/adfm.202312613.
[12] XIAO X F, PAN L Q, CHEN T, et al. Scalable core-sheath yarn for boosting solar interfacial desalination through engineering controllable water supply[J]. Engineering, 2023, 30: 153-160.
[13] 李吉焱, 刘美辰, 罗雯雯, 等. 仿生太阳能驱动界面蒸发器的进展与挑战[J]. 精细化工, 2024, 41(4): 740-749.
LI Jiyan, LIU Meichen, LUO Wenwen, et al. Progress and challenges of biomimetic solar-driven interfacial evaporation[J]. Fine Chemicals, 2024, 41(4): 740-749.
[14] QI S, YUAN L Z, AO S Q, et al. A salt-resistant solar evaporator with organic diradicaloids as photothermal materials for efficient and persistent desalination[J]. Journal of Materials Chemistry A, 2024, 12(11): 6663-6670.
[15] GE C, XU D, SONG Y H, et al. Fibrous solar evaporator with tunable water flow for efficient, self-operating, and sustainable hydroelectricity genera-tion[J]. Advanced Functional Materials, 2024.DOI: 10.1002/adfm.202403608.
[16] ZHENG X, HUANG A, XIAO Y, et al. A fiber-based sandwich evaporator for effective solar evaporation and salt-rejection performance[J]. Desalination, 2024.DOI: 10.1016/j.desal.2024.117416.
[17] XIAO P, GU J C, ZHANG C, et al. A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction[J]. Nano Energy, 2019.DOI: 10.1016/j.nanoen.2019.104002.
[18] KIM C W, SHIN D H, BAITHA M N, et al. High-efficiency solar vapor generation boosted by a solar-induced updraft with biomimetic 3D structures[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29602-29611.
[1] 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64.
[2] 周奉凯, 李沂蒙, 彭佳敏, 毛吉富, 王璐. 用于增强海水淡化性能的聚吡咯功能化废旧织物[J]. 纺织学报, 2024, 45(11): 153-161.
[3] 李露红, 罗天, 丛洪莲. 针织一体成形电容传感器设计及其性能[J]. 纺织学报, 2024, 45(10): 80-88.
[4] 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157.
[5] 鲁颖科, 金炳奇, 徐涛, 高一蕾, 邓炳耀, 李昊轩. 基于粘胶纤维非织造材料的太阳能水电联产装置设计及其性能[J]. 纺织学报, 2024, 45(07): 78-85.
[6] 李久刚, 石玉菲, 刘可帅, 李文斌, 柯贵珍. 石英纱线/石英纤维毡三维织物的设计及其隔热性能[J]. 纺织学报, 2024, 45(06): 53-58.
[7] 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84.
[8] 葛灿, 雍楠, 杜恒, 吴天宇, 方剑. 开放热管理式三维织物基光热海水淡化系统[J]. 纺织学报, 2024, 45(02): 153-161.
[9] 南静静, 杜明娟, 孟家光, 余灵婕, 支超. 海水老化下类填充微穿孔板结构水下吸声材料的性能及其寿命预测[J]. 纺织学报, 2024, 45(02): 85-92.
[10] 杨美玲, 蒋高明, 王婷, 李炳贤. 基于弹簧-质点模型的单贾卡经编鞋材三维仿真[J]. 纺织学报, 2023, 44(11): 113-119.
[11] 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231.
[12] 袁汝旺, 张鹏. 间隔织物用钢筘运动路径规划及驱动机构设计[J]. 纺织学报, 2023, 44(10): 172-180.
[13] 李露红, 赵博宇, 丛洪莲. 复合结构经编针织电容式传感器设计及其性能[J]. 纺织学报, 2023, 44(08): 88-95.
[14] 蒋逸飞, 田焰宽, 戴俊, 王学利, 李发学, 俞建勇, 高婷婷. 太阳能驱动多级海水淡化器件的设计及其集水率探究[J]. 纺织学报, 2023, 44(08): 9-17.
[15] 杨美玲, 蒋高明, 王婷, 李炳贤. 经编间隔鞋材设计与三维仿真[J]. 纺织学报, 2023, 44(08): 96-102.
Viewed
Full text
29
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 7 0 0 22

  From Others local
  Times 8 21
  Rate 28% 72%

Abstract
54
Just accepted Online first Issue
0 0 54
  From Others local
  Times 43 11
  Rate 80% 20%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!