纺织学报 ›› 2025, Vol. 46 ›› Issue (02): 122-129.doi: 10.13475/j.fzxb.20240905301
齐路漫1,2, 孟家光1,2, 余灵婕1,2, 支超1,2()
QI Luman1,2, MENG Jiaguang1,2, YU Lingjie1,2, ZHI Chao1,2()
摘要:
为进一步提升界面太阳能蒸汽发生器的蒸发性能,基于针织间隔织物的可设计性,使用石墨烯/碳纳米管包覆涤纶复合纤维编织光热蒸发层,涤纶长丝编织漂浮层,利用二维编织技术制备的间隔纱将光热蒸发层和漂浮层连接,制备出一种自漂浮纬编异形间隔织物界面太阳能蒸汽发生器,并对其输水性能、光吸收性能、蒸发性能、废水处理性能等进行了研究。结果表明:间隔纱的液体传输速度为1 cm/min,能够实现水分的快速传输;制备的蒸发器可以在无光照条件下漂浮900 s,蒸发器在紫外-可见-近红外光区域的光吸收率高达96%,蒸发速率在1 kW/m2光照条件下为1.80 kg/(m2·h),蒸发效率高达95.73%,即使在质量分数为15%的氯化钠溶液中蒸发效率依然可以达到1.51 kg/(m2·h)。
中图分类号:
[1] | 杜恒, 方剑, 葛灿, 等. 界面光热水蒸发用碳基纤维材料的研究进展[J]. 复合材料学报, 2023, 40(6): 3115-3124. |
DU Heng, FANG Jian, GE Can, et al. Research progress in carbon-based fibrous materials for interfacial photothermal steam generation[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3115-3124. | |
[2] | MA H D, YU L J, LI Z Z, et al. A lotus seedpods-inspired interfacial solar steam generator with outstanding salt tolerance and mechanical properties for efficient and stable seawater desalination[J]. Small, 2023.DOI: 10.1002/smll.202304877. |
[3] |
胡子艳, 张林江, 白波, 等. PDA@PPHF太阳能驱动界面蒸发性能及水质净化研究[J]. 现代化工, 2022, 42(3): 149-153,158.
doi: 10.16606/j.cnki.issn0253-4320.2022.03.030 |
HU Ziyan, ZHANG Linjiang, BAI Bo, et al. Interfacial evaporation and water purification performances of PDA@PPHF driven by solar energy[J]. Modern Chemical Industry, 2022, 42(3): 149-153,158.
doi: 10.16606/j.cnki.issn0253-4320.2022.03.030 |
|
[4] | TIAN Y K, SONG R, LI Y J, et al. Biomimetic structural design of fabric for low-cost, scalable, and highly efficient off-grid solar-driven water purifica-tion[J]. Advanced Functional Materials, 2024.DOI: 10.1002/adfm.202309470. |
[5] | XU D, GE C, CHEN Z, et al. Tree-inspired braiding fibrous frameworks enabling high-efficiency and salt-rejecting solar evaporation[J]. Journal of Materials Chemistry A, 2023, 11(25): 13510-13518. |
[6] | LI X L, ZHU M, ZHANG X L, et al. Polypyrrole solar evaporator designed based on the interface evaporation principle and its application in sewage treatment[J]. Colloids and Surfaces A(Physicochemical and Engineering Aspects), 2023. DOI:10.1016/j.colsurfa.2022.130406. |
[7] | 胡颖, 安显慧, 钱学仁. 聚吡咯/纸浆纤维复合光热纸的制备及其太阳能驱动界面水蒸发研究[J]. 中国造纸, 2022, 41(11): 113-123. |
HU Ying, AN Xianhui, QIAN Xueren. Study on preparation of polypyrrole/pulp fiber composite photothermal paper and its solar-driven interfacial water evaporation[J]. China Pulp & Paper, 2022, 41(11): 113-123. | |
[8] | ZHANG X Y, REN L P, XU J, et al. Magnetically driven tunable 3D Structured Fe3O4 vertical array for high-performance solar steam generation[J]. Small, 2022. DOI:10.1002/smll.202105198. |
[9] | LEI Z W, ZHU S F, SUN X T, et al. A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalina-tion[J]. Advanced Functional Materials, 2022.DOI: 10.1002/adfm.202205790. |
[10] | ZHAO L M, ZHANG L W, YANG Z P, et al. Twisted integration of high-efficiency photothermal/water-transported yarns for boosting solar-powered fabric evaporator[J]. Chemical Engineering Journal, 2024. DOI:10.1016/j.cej.2024.151605. |
[11] | LI Y P, WANG R, ZHANG L, et al. Scalable fabric-based solar steam generator[J]. Advanced Functional Materials, 2024. DOI:10.1002/adfm.202312613. |
[12] | XIAO X F, PAN L Q, CHEN T, et al. Scalable core-sheath yarn for boosting solar interfacial desalination through engineering controllable water supply[J]. Engineering, 2023, 30: 153-160. |
[13] | 李吉焱, 刘美辰, 罗雯雯, 等. 仿生太阳能驱动界面蒸发器的进展与挑战[J]. 精细化工, 2024, 41(4): 740-749. |
LI Jiyan, LIU Meichen, LUO Wenwen, et al. Progress and challenges of biomimetic solar-driven interfacial evaporation[J]. Fine Chemicals, 2024, 41(4): 740-749. | |
[14] | QI S, YUAN L Z, AO S Q, et al. A salt-resistant solar evaporator with organic diradicaloids as photothermal materials for efficient and persistent desalination[J]. Journal of Materials Chemistry A, 2024, 12(11): 6663-6670. |
[15] | GE C, XU D, SONG Y H, et al. Fibrous solar evaporator with tunable water flow for efficient, self-operating, and sustainable hydroelectricity genera-tion[J]. Advanced Functional Materials, 2024.DOI: 10.1002/adfm.202403608. |
[16] | ZHENG X, HUANG A, XIAO Y, et al. A fiber-based sandwich evaporator for effective solar evaporation and salt-rejection performance[J]. Desalination, 2024.DOI: 10.1016/j.desal.2024.117416. |
[17] | XIAO P, GU J C, ZHANG C, et al. A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction[J]. Nano Energy, 2019.DOI: 10.1016/j.nanoen.2019.104002. |
[18] | KIM C W, SHIN D H, BAITHA M N, et al. High-efficiency solar vapor generation boosted by a solar-induced updraft with biomimetic 3D structures[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29602-29611. |
[1] | 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64. |
[2] | 周奉凯, 李沂蒙, 彭佳敏, 毛吉富, 王璐. 用于增强海水淡化性能的聚吡咯功能化废旧织物[J]. 纺织学报, 2024, 45(11): 153-161. |
[3] | 李露红, 罗天, 丛洪莲. 针织一体成形电容传感器设计及其性能[J]. 纺织学报, 2024, 45(10): 80-88. |
[4] | 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157. |
[5] | 鲁颖科, 金炳奇, 徐涛, 高一蕾, 邓炳耀, 李昊轩. 基于粘胶纤维非织造材料的太阳能水电联产装置设计及其性能[J]. 纺织学报, 2024, 45(07): 78-85. |
[6] | 李久刚, 石玉菲, 刘可帅, 李文斌, 柯贵珍. 石英纱线/石英纤维毡三维织物的设计及其隔热性能[J]. 纺织学报, 2024, 45(06): 53-58. |
[7] | 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84. |
[8] | 葛灿, 雍楠, 杜恒, 吴天宇, 方剑. 开放热管理式三维织物基光热海水淡化系统[J]. 纺织学报, 2024, 45(02): 153-161. |
[9] | 南静静, 杜明娟, 孟家光, 余灵婕, 支超. 海水老化下类填充微穿孔板结构水下吸声材料的性能及其寿命预测[J]. 纺织学报, 2024, 45(02): 85-92. |
[10] | 杨美玲, 蒋高明, 王婷, 李炳贤. 基于弹簧-质点模型的单贾卡经编鞋材三维仿真[J]. 纺织学报, 2023, 44(11): 113-119. |
[11] | 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231. |
[12] | 袁汝旺, 张鹏. 间隔织物用钢筘运动路径规划及驱动机构设计[J]. 纺织学报, 2023, 44(10): 172-180. |
[13] | 李露红, 赵博宇, 丛洪莲. 复合结构经编针织电容式传感器设计及其性能[J]. 纺织学报, 2023, 44(08): 88-95. |
[14] | 蒋逸飞, 田焰宽, 戴俊, 王学利, 李发学, 俞建勇, 高婷婷. 太阳能驱动多级海水淡化器件的设计及其集水率探究[J]. 纺织学报, 2023, 44(08): 9-17. |
[15] | 杨美玲, 蒋高明, 王婷, 李炳贤. 经编间隔鞋材设计与三维仿真[J]. 纺织学报, 2023, 44(08): 96-102. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|