纺织学报 ›› 2008, Vol. 29 ›› Issue (9): 43-46.
• 纺织工程 • 上一篇 下一篇
刘建立;左保齐
收稿日期:
修回日期:
出版日期:
发布日期:
LIU Jianli;ZUO Baoqi
Received:
Revised:
Online:
Published:
摘要: 采用3层BP神经网络对织物疵点进行识别,提出织物疵点识别网络不适宜规则,将其应用于隐含层神经元个数选择和训练方法筛选,以优化网络结构,提高训练速度和网络识别精度,设计出较优的织物疵点识别网络。将丝织物中常见的断经、断纬、重纬、档疵、破洞和油污6类疵点作为识别样本,对按照网络不适宜规则设计的网络进行测试。从识别结果来看,BP神经网络可以满足织物疵点识别需要,且具有正确识别率高,识别速度快的优点。
Abstract: A 3-layer BP neural network is used to identify fabric defects.An unsuitability rule is proposed innovatively to optimize the neural network structure,improve the training speed and identification correctness,which is executed during the selection of neuron number in hidden layer and the choice of training methods.The designed neural network is trained with test samples,including warp-lacking,weft-lacking,double weft,loom bar,oil stain and hole,according to the unsuitability rule.Experimental results show that the neural network designed with the way proposed in this paper can satisfy the identification requirement and which possesses advantages of high identification veracity and speed.
刘建立;左保齐. BP神经网络在织物疵点识别中的应用[J]. 纺织学报, 2008, 29(9): 43-46.
LIU Jianli;ZUO Baoqi. Application of BP neural network on the identification of fabric defects[J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 43-46.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://www.fzxb.org.cn/CN/
http://www.fzxb.org.cn/CN/Y2008/V29/I9/43
Cited