纺织学报 ›› 2010, Vol. 31 ›› Issue (5): 30-33.

• 纺织工程 • 上一篇    下一篇

纱线结构中纤维形态的数学表征

薛文良1;魏孟媛2;陈革1;程隆棣1   

  1. 1. 东华大学纺织面料技术教育部重点实验室2. 上海出入境检验检疫局
  • 收稿日期:2009-04-02 修回日期:2009-06-01 出版日期:2010-05-15 发布日期:2010-05-15
  • 通讯作者: 程隆棣

Mathematical characterization of fiber morphology in yarn assembly

XUE Wenliang1; WEI Mengyuan2; CHEN Ge1; CGENH Longdi1

  

  1. 1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University 2. Shanghai Entry-Exit Inspection and Quarantine Bureau
  • Received:2009-04-02 Revised:2009-06-01 Online:2010-05-15 Published:2010-05-15
  • Contact: ldch@dhu.edu.cn

摘要:

根据空间几何学基本原理,采用曲率、挠率以及相对转角对纤维的形态结构进行表征,用于衡量纤维的弯曲变形和扭转变形,改变了以往纤维形态研究只考虑其空间曲线特性的局限,从而建立了纤维的空间弹性曲杆模型。分别对纱线捻回角与纤维扭转数进行数学推导,分析了两者之间的统一关系。并指出纱线捻回角是纤维弯曲变形和扭转变形的综合反映,而纤维扭转数则可以将纤维的弯曲变形和扭转变形加以区别,从而能够突出纤维本身扭转性能的重要性。

Abstract:

According to the basic principle of space geometry, the fiber morphology is characterized by the curvature, torsion and relative rotation for measuring the bend deformation and torsion deformation of fiber. In doing so, the limitation of previous researches of fiber morphology only considering the characteristics of space curve is changed, and the space elastic rod model of fiber is built. At the same time, the yarn twist angle and the fiber twisting number are studied by mathematical deduction, and their relationship is analyzed. As a result, the twist angle is the integrated reflection of bend deformation and torsion deformation, but the twisting number can be used to distinguish the bend deformation and the torsion deformation, so the importance of torsion performance of fiber itself can be emphasized.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!