纺织学报 ›› 2011, Vol. 32 ›› Issue (9): 29-33.

• 纺织工程 • 上一篇    下一篇

基于人工神经网络的织物疵点聚类分析

杨晓波   

  1. 浙江财经学院
  • 收稿日期:2010-09-06 修回日期:2011-02-16 出版日期:2011-09-15 发布日期:2011-09-15
  • 通讯作者: 杨晓波 E-mail:yxb71520@163.com
  • 基金资助:

    省级

Fabric Defect Clustering Analysis based on Artificial Neural Network

  • Received:2010-09-06 Revised:2011-02-16 Online:2011-09-15 Published:2011-09-15

摘要: 本文提出了一种基于人工神经网络的织物疵点分类方法。首先利用灰度共生矩阵提取织物疵点图像的纹理特征参数;然后阐述前馈BP神经网络的拓扑结构,并提出该网络的具体训练过程;最后利用人工神经网络对真实织物疵点样本进行分类,实验采用五类织物样本,网络训练完成后得到实际分类的疵点数据,并利用该数据进行织物疵点分类,分类的准确率达到100%,从而验证了该方法的可行性。

Abstract: It proposes a method to classify fabric defects based on artificial neural network in this paper. Firstly, gray co-occurrence matrix is used to extract texture feature parameters from fabric defects image. Then, the topology structure of forward feedback BP neural network is narrated, and also indicated the training process in detail. Finally, the BP artificial neural network is applied to fabric defects classification, the five kinds of fabric sample is used in the experiment, and defects data for classification can be gotten through neural network training process, these data can be used to classify fabric defects, the accuracy of classification is up to 100 percent, which verify the feasibility of the method mentioned in the paper.

中图分类号: 

  • TP311.131
[1] 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4): 137-142.
[2] 杨晓波. 基于自适应离散小波变换的混合特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(1): 133-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!