纺织学报 ›› 2011, Vol. 32 ›› Issue (12): 128-133.

• 机械与器材 • 上一篇    下一篇

基于神经网络算法的工缝机节能电动机控制系统的设计

徐展鹏1,孙云云2,刘涵2,郭吉丰3   

  1. 1. 浙江大学电气工程学院
    2.
    3. 浙江大学
  • 收稿日期:2010-12-09 修回日期:2011-04-12 出版日期:2011-12-15 发布日期:2011-12-16
  • 通讯作者: 徐展鹏 E-mail:20910039@zju.edu.cn

A design of industrial sewing control system of energy-saving motor based on DSP

  • Received:2010-12-09 Revised:2011-04-12 Online:2011-12-15 Published:2011-12-16

摘要: 为了解决目前纺织业工缝设备中大量运用的离合式异步电机造成能源利用效率低下的问题,本文设计了一种基于DSP芯片的节能电机控制系统。由于工业平缝机是一个滞后、非线性、变参数的控制系统,采用传统的PID控制,因其参数不能随着受控系统的变化进行在线调节,会使控制的有效性与可靠性下降。为此,本文针对这一缺陷,在传统的PID基础上加入了BP神经网络算法,利用其自学习和自调节能力实现了PID参数随系统的变化而进行自行调节的想法. 利用BP网络PID的原理,对调速系统进行了MATLAB仿真,证明了BP网络PID优于传统PID的控制能力。最后将这一结果运用于实际的软件设计中,取得了预期的效果。

Abstract: In order to address the problem of low electric efficiency of clutch asynchronous motors used abundantly in the industrial sewing machine control systems, an energy saving motor control system based on the DSP was designed. The industrial sewing machine control system is hysteretic, time-variant and nonlinear, hence the traditional PID control algorithm will reduce the serviceability and reliability of the system because the PID parameters cannot be adjusted timely when the controlled objects are varying. Considering this phenomenon, a late model named BP Neural Algorithm is added to the traditional PID control algorithm, whose self-learning and self-adjusting capabilities help realize the thoughts that parameters of a PID controller can regulate themselves as the system is fluctuating. Furthermore, applying the BP PID algorithm, MATLAB emulations of the energy saving motor control system are conducted, and the results of the emulations demonstrate that the control performance of BP PID is more superb than that of traditional PID. Lastly, the BP algorithm is synthesised in the software design, and achieves a satisfactory consequence.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!