纺织学报 ›› 2013, Vol. 34 ›› Issue (3): 15-19.

• 纤维材料 • 上一篇    下一篇

羽毛绒种类鉴定及气味检测方法研究

万旺军1,邓同乐2,计芬芬3, 葛建2,付贤树2,邬佳丽2   

    1. 浙江省检验检疫科学技术研究院萧山分院
    2. 中国计量学院生命科学学院
    3. 上海市纺织科学研究院
  • 收稿日期:2012-02-22 修回日期:2012-08-16 出版日期:2013-03-15 发布日期:2013-03-07
  • 通讯作者: 邓同乐 E-mail:dengtl@cjlu.edu.cn
  • 基金资助:

    浙江省科技计划面上项目;浙江检验检疫局科技计划项目

Species identification and odor detection of down

  • Received:2012-02-22 Revised:2012-08-16 Online:2013-03-15 Published:2013-03-07

摘要: 羽绒种类的纯正与否以及有无异味是影响羽绒品质好坏的两个重要因素。为了准确、快速地鉴定羽绒种类,本研究利用近红外光谱技术建立了一种无损快速鉴别羽绒种类的模型。同时,结合GC-MS技术鉴定分析了不同羽绒浸出物中特征气味成分。结果表明,近红外光谱显示4种羽绒种类(鹅毛、鸭毛、鹅绒、鸭绒)的反射率在4000~12000cm-1的变化趋势比较相近,分别在光波段8700~8100cm-1,7500~6000cm-1,5600~6000cm-1等处有明显的波峰,且特征波段的出峰位置大体相同,提示4种羽绒种类的主要成分大致相同。经二阶导数结合矢量归一化法建立的模型,三维得分图显示可区分4种羽绒种类,其准确性、专属性均良好,提示近红外光谱法是一种快速、高效并可用于羽绒种类鉴别的方法。另外,GC-MS检测结果显示羧酸类化合物和内酯类化合物为羽绒浸出物中的主要成分,这为进一步分析和鉴定羽绒中气味成分及选择相应检测传感器提供了理论依据。

关键词: 羽绒, 成分分析, 近红外光谱法, GC-MS

Abstract: Quality control for feather and down depends mainly on the category and peculiar smell of feather and down. To establish a quick and exact identification for the feather and down category, Near Infrared (NIR) Spectroscopy technology was employed for goose feather and duck feather, goose down and ducks down. Though analyzing the near-infrared diffuse reflection spectrum, the recognition model of feather and down category was set up. At the same time, extracts from the different feather and down were measured by using the Gas chromatography-mass (GC-MS) spectroscopy analysis. The NIR results have shown that the mean spectrum of goose down and duck down was in the 4000 to 12000 cm-1 NIR range, particularly in 8700–8100 cm-1, 7500–6000 cm-1 and 5600–6000 cm-1 region. The similar reflectance further clarified that the downs include the common major chemical components, such as proteins. By normalized and second-derivative treatments, three-D principal component score plot demonstrated that all four feather and down were distinguished because of their chemical and structural difference. These results suggested the feasibility of using near infrared spectroscopy for the identification of the feather and down category. In addition, GC-MS detection indicated that Carboxylic acids and Lactones are main components in the extracts. These data might be helpful to analyze and identify some volatile odor components. This study might provide some new clues for further investigation about down odor ingredients and gas sensor's selection.

Key words: down, component analysis, NIR, GC-MS

中图分类号: 

  • TS959.16
[1] 张陆佳 林兰天 陈春敏 申炎仃 高琮. 基于主成分分析的纤维拉伸断裂声发射信号识别[J]. 纺织学报, 2018, 39(01): 19-24.
[2] 夏凤勤 毋戈 谢昊洋 钟跃崎. 基于人体纵截面特征曲线的体型分类[J]. 纺织学报, 2017, 38(06): 86-91.
[3] 李东 万贤福 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(05): 122-127.
[4] 万振凯 贡丽英 万莉. 基于损伤指数的三维编织复合材料结构损伤评估[J]. 纺织学报, 2017, 38(05): 69-74.
[5] 王玲 杨以雄 陈炜. 服装工序相似性标准工时预测[J]. 纺织学报, 2016, 37(11): 114-119.
[6] 苟捷 刘建立 高卫东. 应用主成分分析的原棉可纺性指数构建[J]. 纺织学报, 2015, 36(08): 16-21.
[7] 金关秀 应伟伟 雷新 从明芳 祝成炎. 纺粘非织造布孔隙形状的定量分析[J]. 纺织学报, 2015, 36(08): 56-61.
[8] 夏明 王文玲 张文斌. 人体特征断面形状拟合及围度尺寸预测[J]. 纺织学报, 2014, 35(8): 76-0.
[9] 钟智丽 王玉新. 聚丙烯长丝/芳纶包缠纱捻度的优化[J]. 纺织学报, 2014, 35(6): 40-0.
[10] 周岚;汤利桥;俞杭芳;邵建中;. 灰色羽绒的漂白技术[J]. 纺织学报, 2011, 32(1): 59-66.
[11] 耿艳蕾;崔运花;程隆棣;黄淑韵. 不同结构竹浆纤维纱线性能测试及分类[J]. 纺织学报, 2010, 31(4): 35-38.
[12] 吴刚;赵珊红;王华雄;吴俭俭;郭方龙;王力君;谢维斌;宋保国;叶庆富. 加速溶剂萃取-高效液相色谱测定羽绒羽毛中的烷基苯酚与聚氧乙烯醚[J]. 纺织学报, 2010, 31(3): 72-77.
[13] 刘贵;于伟东.. 主成分分析的BP神经网络在精毛纺粗纱工序中的应用[J]. 纺织学报, 2008, 29(9): 34-37.
[14] 徐松杰. 基于主成分分析法的纺织企业技术改造效果评价[J]. 纺织学报, 2008, 29(7): 128-131.
[15] 李艳梅.;张渭源. 基于灰色模型的服装面料缝纫皱缩预测[J]. 纺织学报, 2008, 29(6): 92-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!