纺织学报 ›› 2013, Vol. 34 ›› Issue (6): 147-154.

• 沙龙 • 上一篇    

短纤维纺纱技术的发展概述及关键特征解析

夏治刚1,2,徐卫林1,2,叶汶祥1   

    1. 武汉纺织大学纺织科学与工程学院
    2. 武汉纺织大学新型纺织材料绿色加工及其功能化教育部重点实验室
  • 收稿日期:2013-03-13 修回日期:2013-03-19 出版日期:2013-06-15 发布日期:2013-06-19
  • 通讯作者: 夏治刚 E-mail:117462379@qq.com

Review of staple yarn spinning technology and analysis of its key features

  • Received:2013-03-13 Revised:2013-03-19 Online:2013-06-15 Published:2013-06-19
  • Contact: Zhi-Gang Xia E-mail:117462379@qq.com

摘要: 基于现代短纤维纺纱技术原理,概述包括环锭纺、转杯纺、涡流纺等短纤维纺纱技术的发展历程,总结推动短纤维纺纱技术发展的因素和途径,并深入分析制约短纤维纺纱技术的关键问题。结论表明:高效、节能、高品质成纱是短纤维纺纱技术发展的最主要动因,工艺优化、装备改进、多技术组合是短纤维纺纱技术发展的最常用方式;短纤维成纱过程中,采用气流、分束、集聚、助捻等机械外力强化纤维控制的方式已得到充分运用,面对短纤维纺纱技术发展中呈现的新问题、新瓶颈,需协同短纤维原料成纱性能的在线改善、纺纱原料的多功能复合等技术的深入研究和应用,推动短纤维纺纱技术的进一步发展和完善。关键词 短纤维纺纱;成纱原理;技术发展;多功能复合

关键词: 短纤维, 纺纱, 成纱原理, 技术发展, 多功能复合

Abstract: Based on the modern staple yarn spinning principles, developments were overviewed for the methods including ring spinning, rotor spinning and vortex spinning; the factors and means promoting the staple yarn spinning development were summarized; key features restricting staple yarn spinning further development were also studied extensively. Results indicated that such factors as high efficiency, energy saving and high quality yarn production were main motivations, and process optimization, equipment improvement as well as multi-technical combination were the most common methods for staple yarn spinning development. Since reinforcing fiber control via external mechanical forces such as pneumatic jet or suction, separation, condensing and false twisting has been sufficiently applied during spinning, it is necessary for staple spinning further development and improvement to investigate and apply online fiber property improvement and material multi-functional composite spinning technologies in synergic when new technical problems and bottlenecks appear during the staple spinning development. Key Words Staple Spinning; Yarn Formation Principle; Technical Development; multi-functional composition

Key words: saple fiber, spinning, yarn formation principle, technological development, multi-functional composition

[1] BOOTH, J. E., Textile mathematics [M], vol. Ⅱ, Manchester: The Textile Institute, 1975: 333-350.
[2] HEARLE J. W. S., GUPTA B.S., and MERCHANT V.B., Migration of Fibers in Yarns Part I: Characterization and Idealization of Migration Behavior [J], Textile Res. J. 1965, 35(4): 329-334.
[3] GUPTA B. S., Fiber Migration in Staple Yarns: Part II: The Geometric Mechanism of Fiber Migration and the Influence of Roving and Drafting Variables [J], Textile Res. J. 1970, 40(1): 15-24.
[4] HEARLE J.W.S., and BOSE O.N., Migration of Fibers in Yarns: Part II: A Geometrical Explanation of Migration [J], Textile Res. J. 1965, 35(8): 693-699.
[5] MORTON W. E., The Arrangement of Fibres in Single Yarns [J], Textile Res. J. 1956, 26(5): 325-331.
[6] DOGU I., The Distribution of Transverse Pressure in a Twisted Yarn Allowing for the Fiber Migration and Variation of Fiber Packing Density [J], Textile Res. J. 1972, 42(12): 726-733.
[7] GUPA B. S., Fiber Migration in Staple Yarns: Part III: An Analysis of Migration Force and the Influence of the Variables in Yarn Structure [J], Textile Res. J. 1972, 42(3): 181-196.
[8] HEARLE J. W. S., GUPTA B. S., and GOSWAMI B. C., The Migration of Fibers in yarns Part V: The Combination of Mechanisms of migration [J], Textile Res. J. 1965, 35(11): 972-978.
[9] SUBRAMANNIAN T. A., SALHOTRA K. R., and BHADURI S. N., Twist Flow in Ring Spinning [J], Textile Res. J. 1967, 37(3): 195-204.
[10] XIA Z., WANG H., WANG X., YE W., XU W., A Study on the relationship between irregularity and hairiness of spun yarns [J], Textile Res. J., 2011, 81(3), 273–279.
[11] XIA Z., WANG X., YE W., XU W., ELTAHIR H.A., Effect of repeated winding on carded ring cotton yarn properties [J], Fibers and Polymers, 2011, 12(4): 534-540.
[12] CHANG L., TANG Z.X., WANG X., Effect of Yarn Hairiness on Energy Consumption in Rotating a Ring-Spun Yarn Package [J], Textile Res. J., 2003, 73(11): 949-954.
[13] BELTRAN R., WANG L., WANG X., A Controlled Experiment on Yarn Hairiness and Fabric Pilling [J], Textile Res. J., 2007, 77(3): 179-183.
[14] KRETZSCHMAR S. D., ?zgüney A.T., ?z?elik G., ?zerdem A., The Comparison of Cotton Knitted Fabric Properties Made of Compact and Conventional Ring Yarns Before and After the Dyeing Process [J], Textile Res. J., 2007, 77(4): 233-241.
[15] FUJINO K., and SHIMOTSUMA Y., Studies on Spinning Rings and Travellers [J], Textile Res. J. 1955, 25(9): 799-811.
[16] CRANK J., and WHITMORE D., The Influence of Friction and Traveller Weight in Ring Spinning [J], Textile Res. J. 1954, 24(11): 1006-1010.
[17] KOUKICHI Y., and MICHIO K., A Study on the Accelerated-Point Distribution of Floating Fibers Drafting Processes [J], Journal of the Textile Machinery Society of Japan 1975, 21(4): 95-102.
[18] GRAHAM J. S., and BRAGG C. K., Effect of Spinning Draft Parameters on Cotton Drafting Efficiency [J], Textile Res. J. 1975, 45(7): 515-520.
[19] SU C., and FANG J., Optimum Drafting Conditions of Non-circular Polyester and Cotton Blend Yarns [J], Textile Res. J. 2006, 76(6): 441-447.
[20] HASSEN M. B., SAKLI F., SINOIMERI, A., and RENNER M., Experimental Study of a High Drafting System in Cotton Spinning [J], Textile Res. J. 2003, 73(1): 55-58.
[21] SU C., and LO K., Optimum Drafting Conditions of Fine-Denier Polyester Spun Yarn [J], Textile Res. J. 2000, 70(2): 93-97.
[22] SU C., and FANG J., Optimum Drafting Conditions of Non-circular Polyester and Cotton Blend Yarns [J], Textile Res. J. 2006, 76(6): 441-447.
[23] ISHTIAQUE S. M., DAS A., and NIVOGI R., Optimization of Fiber Friction, Top Arm Pressure and Roller Setting at Various Drafting Stages [J], Textile Res. J. 2006, 76(12): 913-921.
[24] SU C., and FANG J., Fine Count Yarn Spun with a High Draft Ratio [J], Textile Res. J. 2004, 74(2): 123-126.
[25] CHEN K., HUANG C., CHEN S., and PAN N., Developing a New Drafting System for Ring Spinning Machines [J], Textile Res. J. 2000, 70(2): 154-160.
[26] WANG X., and KHAN Z.A., Mohair Fibre Drafting in Ring Spinning. Part I: Pinned Apron [J], J. Text. Inst., 2000, 91 (1): 16-20.
[27] KHAN Z.A., and WANG X., Mohair Fibre Drafting in Ring Spinning. Part II: Pinned Roller [J], 2000, 91 (1): 21-27.
[28] KRIFA M., ETHRIDGE M. D., Compact Spinning Effect on Cotton Yarn Quality: Interactions with Fiber Characteristics [J], Textile Res. J., 2006, 76(5): 388-399.
[29] XUE W., WEI M., ZHANG N., CHENG L., Numerical simulation on the condensing effect of suction slot in compact spinning with lattice apron [J], J. Text. Inst., 2012, 103(10): 1116-1126.
[30] ZOU Z.Y., ZHU Y.D., HUA Z.H., WANG Y., CHENG L.D., Studies of flexible fiber trajectory and its pneumatic condensing mechanism in compact spinning with lattice apron [J], Textile Res. J., 2010, 80(8): 712-719.
[31] ZHANG X., ZOU Z., CHENG L., Numerical study of the three-dimensional flow field in compact spinning with inspiratory Groove [J], Textile Res. J., 2010, 80(1): 84-92.
[32] BECEREN Y., NERGIS B. U., Comparison of the Effect of Cotton Yarns Produced by New, Modified and Conventional Spinning Systems on Yarn and Knitted Fabric Performance [J], Textile Res. J., 2008, 78(4): 297-303.
[33] G?KTEPE F., DEMET Y., ?ZER G., A Comparison of Compact Yarn Properties Produced on Different Systems [J], Textile Res. J., 2006, 76(3): 226-234.
[34] KILIC G..B., SüLAR V., Frictional properties of cotton-Tencel yarns spun in different spinning systems [J], Textile Res. J., 2012, 82(8): 755-565.
[35] ???LU H.?., KIRE?CI A., Investigation of the fastness properties and color values of cotton fabrics knitted from ring spun and Sirospun?[J], J. Text. Inst., 2011, 102(2): 114-119.
[36] SOLTANI P., JOHARI M.S., A study on siro-, solo-, compact-, and conventional ring-spun yarns. Part II: yarn strength with relation to physical and structural properties of yarns [J], J. Text. Inst., 2012, 103(9): 921-930.
[37] XIA Z., WANG X., YE W., ELTAHIR H.A., Xu W., Fiber trapping comparison of embeddable and locatable spinning with sirofil and siro core-spinning with flute pipe air suction [J], Textile Res. J., 2012, 82(12): 1255-1262.
[38] LIU W.Y., HUANG T.Y., LI H.M., LI Y.L., Stability and control of the convergence point for two-strand yarn spinning [J], J. Text. Inst., 2012, 103(11): 1228-1233.
[39] LIU S., DAI J., JIA H., LIU X., XU B., Effect of sirospun spinning with a press bar top pin on qualities of flax/cotton blend yarn [J], Textile Res. J., 2012, 82(10): 985-993.
[40] SUBRAMANIAM V., NATARAJAN K. S., Frictional Properties of Siro Spun Yarns [J], J. Text. Inst., 2007, 98(3): 289-292.
[41] CHENG L., FU P., YU X., Relationship Between Hairiness and the Twisting Principles of Solospun and Ring Spun Yarns [J], Textile Res. J., 2004, 74(9): 763-766.
[42] POURAHMAD A., JOHARRI M.S., Comparison of the properties of ring, solo, and siro core-spun yarns [J], J. Text. Inst., 2011, 102(6): 540-547.
[43] YILMAZ D., USAL M.R., A comparison of compact-jet and conventional ring-spun yarns [J], Textile Res. J., 2011, 81(5): 459-470.
[44] YILMAZ D., USAL M.R., Improvement in yarn hairiness by the siro-jet spinning method [J], 2013, DOI: 10.1177/0040517512471748.
[45] JEON B. S., Effect of an Air-Suction Nozzle on Yarn Hairiness and Quality [J], Textile Res. J., 2000, 70(11): 1019–1024.
[46] XU B.G., TAO X.M., Techniques for Torque Modification of Singles Ring Spun Yarns [J], Textile Res. J., 2008, 78 (10): 869-879.
[47] FENG J., XU B.G., TAO X.M., Systematic investigation and optimization of fine cotton yarns produced in a modified ring spinning system using statistical methods[J], Textile Res. J., 2013, 83 (3): 238-248.
[48] GUO Y., and TAO XM., XU BG., FENG J., and WANG SY., Structural characteristics of low torque and ring spun yarns [J], Textile Res. J. 2011, 81 (8): 778-790.
[49] NIKOLI? M., STIEPANOVI? Z, LESJAK F., ?TRITOF A, Compact Spinning for Improved Quality of Ring-Spun Yarns [J], Fibers & Textiles in Eastern Europe, 2011, 11(4): 30-35.
[50] SOE A. K., TAKAHASHI M., NAKAJIMA M., MATSUO T., and MATSUMOTO T., Structure and Properties of MVS Yarn in Comparison with Ring Yarn and Open-end Rotor Spun Yarns [J], Textile Res. J. 2004, 74 (9): 819-826.
[51] LAWRENCE C. A., Advances in yarn spinning technology [M]. Sawston: Woodhead Publishing Limited, 2010: 262.
[52] LORD P R, Handbook of yarn production: Technology, science and economics [M]. Sawston: Woodhead Publishing Limited, 2003: 185-187.
[53] GORDON S., and Hsieh, Y-L., Cotton: Science and technology [M]. Manchester: The Textile Institute, 2007: 253-254.
[54] LAWRENCE C. A., and CHEN K. Z., Textile Progress Rotor-Spinning [M]. Manchester: The Textile Institute, 1984: 5, 62.
[55] 狄剑锋,王瑞. 转杯纺、摩擦纺和喷气纺的技术分析和发展趋向[J].天津纺织工学院学报,1990, 9 (3-4): 84-88.
DI Jianfeng, WANG Rui, The technically analysis and trend of development for rotor spinning, frictional spinning and air-jet spinning [J]. Journal of TianJin Institute of Textile Science and Technology, 1990, 9 (3-4): 84-88.
[56] 汤龙世. 转杯纺系统生产技术[M].1版.北京:中国纺织出版社,2005: 2-4.
TANG Longshi. Rotor spun system production technology [M]. Beijing: China Textile Press, 2005: 2-4.
[57] DURU P. N., and BABAARSLAN O., determining an optimum opening roller speed for spinning polyester/waste blend rotor yarns [J], Textile Res. J. 2003, 70 (10): 907-911.
[58] MANOHAR J.S., RAKSHIT A.K., and BALASUBRAMANIAN N., Influence of rotor speed, rotor diameter, and carding conditions on yarn quality in open-end spinning [J], Textile Res. J. 1983, 53 (8): 497-503.
[59] XILA F., PEY A., and BARELLA A.A., A contribution to the study of the hairiness of cotton open-end-spun yarns. Part I: The influence of the rotor speed and twist multiplier on yarn hairiness in relation to pre-spinning processing [J], J., Textile Inst., 1982, 73(2): 55-63.
[60] MARINO P.N., Garrofalo J., Barella A., and Manich A.M., Factoral studies in rotor spinning Part II: polyester-fiber and polyester-fibre-cotton blended-fibre yarns [J], J., Textile Inst., 1984, 75(1): 23-27.
[61] MARINO P.N., Carpintero J., Manich A.M., and Barella A., The influence of the under-pressure in the rotor on the properties of open-end-spun cotton yarns at different values of the rotor speed and navel speed [J], J., Textile Inst., 1985, 76(2): 86-102.
[62] SALHOTRA K.R., and BALASUBRAMANIAN P., An approach to the optimization of rotor-spinning machine parameters [J], J., Textile Inst., 1986, 77(2): 128-145.
[63] YANG R.H., and WANG S.Y., Determination of the convergent point in the rotor-spun composite yarn spinning process [J], Textile Res. J. 2009, 79 (6): 555-557.
[64] NIELD R., and ALI A.R.A., Open-End-Spun Core-Spun Yarns [J], J., Textile Inst., 1977, 68(7): 223-229.
[65] POURESFANDIARI F., New method of producing loop fancy yarns on a modified open-end rotor spinning frame [J], Textile Res. J. 2003, 73 (3): 209-215.
[66] ZOU Z., CHENG L., XUE W., and YU J., A study of the twisted strength of the whirled airflow in Murata vortex spinning [J], Textile Res. J. 2008, 78 (78): 682-687.
[67] PEI Z., YU C., Study on the principle of yarn formation of Murata vortex spinning using numerical simulation [J], Textile Res. J. 2009, 79 (14): 1274-1280.
[68] ERDUMLU N., OXENHAM W., OZIPEK B., The impact of combing and processing parameters on the structure and properties of fine count vortex yarns [J], Textile Res. J. 2013, 83 (4): 396-405.
[69] DENO K., Spinning Apparatus with Twisting Guide Surface. US Patent, 5528895[P]. 1996-09-02.
[70] ERDUMLU N., OZIPEK B., and OXENHAM W., Vortex spinning technology [J]. Textile Progress, 2012, 44(3-4): 141-174.
[71] OXENHAM W., and BASAL G., Effects of some process parameters on the structure and properties of vortex spun yarn [J], Textile Res. J. 2006, 76 (6):492-499.
[72] ERDUMLU N., OZIPEK B., OZTUNA A.S., and CETINKAYA S., Investigation of vortex spun yarn properties in comparison with conventional ring and open-end rotor spun yarns [J], Textile Res. J. 2009, 79 (7):585-595.
[73] ORTLEK H.G., TUTAK M., YOLACAN G., Assessing colour differences of viscose fabrics knitted from vortex-, ring- and open-end rotor-spun yarns after abrasion[J], J. Text. Inst., 2010, 101(4): 310-314.
[74] KILIC G.B., SULAR V., Frictional properties of cotton-tencel yarns spun in different spinning systems [J], Textile Res. J. 2012, 82 (8):755-765.
[75] RAMESHKUMAR C., ANANDKUMAR P., SENTHILNATHAN P., JEEVITHA R., and ANBUMANI N., Comparative Studies on Ring Rotor and Vortex Yarn Knitted Fabrics[J], AUTEX Res. J., 2008, 8 (4):100-105.
[76] ZHENG S., ZOU Z., SHEN W., and CHENG L., A study of the fiber distribution in yarn cross section for vortex-spun yarn [J], Textile Res. J. 2012, 82 (15):1579-1586.
[77] BASU A., Progress in air-jet spinning [J]. Textile Progress, 2009, 29(3): 1-38.
[78] ORTLEK H.G., Effect of some variables on properties of 100% cotton vortex spun yarn [J], Textile Res. J. 2005, 75 (6):458-461.
[79] ORTLEK H.G., and ULKU S., Effects of spandex and yarn counts on the properties of elastic core-spun yarns produced on Murata vortex spinner [J], Textile Res. J. 2007, 77 (6):432-436.
[80] ERDUMULU N., OZIPEK B., and OXENHAM W.,The structure and properties of carded cotton vortex yarns [J], Textile Res. J. 2012, 82 (7):708-718.
[81] XU W., XIA Z., YE W., CUI W., LI W., and ZHANG S. Method and apparatus for producing high quality yarn on a ring-spinning machine, US Patent, 007552580B2 [P]. 2009-06-30.
[1] 刘春 谢春萍 苏旭中 刘新金. 假捻器在环锭细纱机上的应用效果及工艺优化[J]. 纺织学报, 2018, 39(07): 27-31.
[2] 杨瑞华 韩瑞叶 徐亚亚 薛元 王鸿博 高卫东. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(07): 32-38.
[3] 邵景峰 马创涛. 多工序递阶的棉纺过程质量智能控制模型[J]. 纺织学报, 2018, 39(07): 137-147.
[4] 王瑞洁 李龙 秦彩霞 . 采用滑溜牵伸的低比例山羊绒混纺纺纱实践[J]. 纺织学报, 2018, 39(06): 24-28.
[5] 徐亚亚 杨瑞华 韩瑞叶 薛元 高卫东. 应用Kubelka-Munk双常数理论的数码转杯纱混色效果预测[J]. 纺织学报, 2018, 39(06): 36-41.
[6] 曲华洋 谢春萍 徐伯俊 刘新金. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018, 39(06): 52-57.
[7] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[8] 白婧 杨柳 张毅 张瑞云 马颜雪 俞建勇 程隆棣. 纯棉色纺纱配色中的Stearns-Noechel模型参数优化[J]. 纺织学报, 2018, 39(03): 31-37.
[9] 顾燕 薛元 高卫东 杨瑞华 郭明瑞. 采用三通道数码纺的色彩渐变纱性能[J]. 纺织学报, 2018, 39(02): 62-67.
[10] 袁理 代乔民 付顺林 鄢煜尘. 结合全局与局部多样性特征的色纺纱色度学指标测试与评价[J]. 纺织学报, 2018, 39(02): 157-164.
[11] 杨瑞华 薛元 郭明瑞 王鸿博 周建 高卫东. 数码转杯纺成纱原理及其纱线特点[J]. 纺织学报, 2017, 38(11): 32-35.
[12] 王玉娟 马崇启 刘建勇 程璐 张红梅 王宣. 应用改进Stearns-Noeche模型的色纺纱配色技术[J]. 纺织学报, 2017, 38(10): 25-31.
[13] 晏江 邱华. 环锭旋流喷嘴纺麻混纺纱的性能[J]. 纺织学报, 2017, 38(10): 19-24.
[14] 王元峰 冯艳飞 夏治刚 . 复合纱体中长丝分布形态对纱线性能的影响[J]. 纺织学报, 2017, 38(09): 32-39.
[15] 罗婷 纪峰 程隆棣 吉宜军 邓万胜. 双S曲线软牵伸纺纱技术[J]. 纺织学报, 2017, 38(07): 34-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!