纺织学报 ›› 2013, Vol. 34 ›› Issue (12): 50-0.

• 纺织工程 • 上一篇    下一篇

中低密度机织平纹织物中纱线压扁变化规律

张香俊 郑天勇 陈子晗   

  1. 中原工学院河南省功能性纺织材料及其应用重点实验室
  • 收稿日期:2012-11-02 修回日期:2013-04-15 出版日期:2013-12-15 发布日期:2013-12-16
  • 基金资助:

    2010年河南省高校科技创新人才支持计划;郑州市科技研究与开发基金资助项目

Research on flattening of yarn’s cross-sections in low and medium density plain woven fabrics

  • Received:2012-11-02 Revised:2013-04-15 Online:2013-12-15 Published:2013-12-16

摘要: 摘 要 为了探讨真实描述平纹织物结构中纱线截面的几何形状,需要测量沿纱线中心线方向的压扁程度。设计并织造了经向紧度和纬向紧度分别为34.72%、43.4%、52.08%的9块中低紧度布样,用Keyence数码显微镜获得布样上经或纬组织点图片,非破坏性地实际测量组织点不同位置处纱线直径。利用Excel和Origin软件对测量数据的输入与处理、绘制测量位置与压扁系数的点线图,分析沿纱线中心线方向纱线截面的变化规律和不同紧度的织物中经纱或纬纱的压扁程度。发现纱线截面的压扁系数与组织点的中心位置距离呈现高度线性相关,距离越近,压扁程度越大;中低织物紧度条件下,紧度对纱线压扁系数影响不明显。

关键词: 纱线截面几何形状, 紧度, 平纹织物, 压扁系数

Abstract: Abstract In order to describe the yarn’s cross-section geometry of the woven plain fabric, it was necessary to study the flattening of the cross-sections of the yarns along their central lines. Designed 9 kinds of sample of fabrics tightness of 34.72%, 43.4%, 52.08%.Taked pictures by using Keyence digital microscope to samples, did non-destructive measurement and saved date with them. Excel and Origin software were used to input and process date, then drew linear graph of the yarn’s flatness and the measured position to analyze the flattening of yarn’s cross-sections and the impact of the tightness of these samples to the degree of flatness. The conclusions were made that the flattening coefficient of the yarn centerline was strong linear correlation, more near the center of point more great flattening, and not affected by covering factor of the fabric under the condition of low tightness of fabric.

Key words: cross-section geometry of yarn, tightness, plain fabric, flattening factor

[1] 周熠 陈晓钢 张尚勇 龚小舟. 超高分子量聚乙烯平纹织物在柔性防弹服中的应用[J]. 纺织学报, 2016, 37(4): 60-0.
[2] 周熠 张尚勇 龚小舟 徐安长. 摩擦对平纹织物防弹性能影响的研究进展[J]. 纺织学报, 2016, 37(08): 160-164.
[3] 全琼瑛 胡金莲 吕晶. 高紧度形状记忆纤维/棉机织物的记忆性能[J]. 纺织学报, 2013, 34(7): 57-61.
[4] 左中鹅;王瑞;徐磊. 基于有限单元法的平纹织物复合材料强度预测:2.复合材料层合板拉伸过程的有限元分析[J]. 纺织学报, 2010, 31(1): 64-67.
[5] 左中鹅;王瑞;徐磊. 基于有限单元法的平纹织物复合材料强度预测:1. RVE的有限元模型[J]. 纺织学报, 2009, 30(12): 45-49.
[6] 潘如如;高卫东. 高紧度机织物图像倾斜的自动纠正[J]. 纺织学报, 2009, 30(10): 58-61.
[7] 李丽君;崔鸿钧. 苎麻织物结构设计若干问题探讨[J]. 纺织学报, 2007, 28(4): 34-37.
[8] 傅菊芬;白伦. 织物缩水机理及其数学模型的研究与应用[J]. 纺织学报, 2006, 27(4): 31-35.
[9] 任志华;吴坚;于永玲. 经验回归法计算织物紧度[J]. 纺织学报, 2005, 26(5): 46-48.
[10] 吕丽华;吴坚;叶方. 织物结构对折皱弹性和硬挺度的影响[J]. 纺织学报, 2004, 25(05): 99-100.
[11] 魏铭森. 棉包芯摩擦纱织物性能的试验和分析[J]. 纺织学报, 2004, 25(01): 70-71.
[12] 张新安. 织物紧度与透湿性关系及透湿的测量方法[J]. 纺织学报, 2002, 23(02): 35-36.
[13] 毛成栋;张明光;娄天彦. 斜纹织物纹路特征的优化设计[J]. 纺织学报, 2002, 23(01): 45-46.
[14] 谭 磊;胡心怡. 纬编针织物方向与弹性及刚柔性的关系[J]. 纺织学报, 2002, 23(01): 51-52.
[15] 张新安. 织物紧度与刚柔性实验研究[J]. 纺织学报, 2001, 22(06): 17-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!