纺织学报 ›› 2014, Vol. 35 ›› Issue (1): 62-0.

• 纺织工程 • 上一篇    下一篇

基于集成多支持向量回归融合的上浆率在线软测量方法

田慧欣1,2 贾玉凤3   

    1. 天津工业大学电气工程与自动化学院
    2. 天津工业大学电工电能新技术天津市重点实验室
    3. 天津三星通信技术研究有限公司
  • 收稿日期:2013-01-28 修回日期:2013-07-13 出版日期:2014-01-15 发布日期:2014-01-15
  • 通讯作者: 田慧欣 E-mail:icedewl@163.com
  • 基金资助:

    国家自然科学基金项目;天津市应用基础及前沿技术研究计划项目;中国纺织工业联合会科技指导性项目

Online soft measurement of sizing percentage based on intergrated multiple SVR fusion by Bagging

  • Received:2013-01-28 Revised:2013-07-13 Online:2014-01-15 Published:2014-01-15
  • Contact: Huixin Tian E-mail:icedewl@163.com

摘要: 现有浆纱过程上浆率的检测无法实现实时在线测量,直接影响纱线产品质量的保障。本文提出一种新的基于Bagging多SVR融合的建模方法,建立上浆率在线软测量模型。首先对浆纱过程进行分析,确定影响上浆率的主要因素。将这些主要因素作为模型的输入,用不同的核函数、损失函数和参数建立基本SVR模型。使用Bagging将多个SVR模型进行融合,使他们的优势进行互补,不足得以克服,得到最终的上浆率在线软测量模型。使用实际生产数据对模型进行检验,并将其与传统软测量方法进行比较,结果表明基于Bagging多SVR融合的上浆率在线软测量模型的性能优于传统软测量模型,并具有较高的测量精度,完全能够满足实际生产的需要。

关键词: 上浆率, 浆纱过程, 软测量, Bagging, 支持向量回归机

Abstract: The measure method for sizing percentage is not real time method in practical production process. Therefore the yarn quality can not be guaranteed. A new modeling method is proposed for sizing percentage soft sensor real time based on multiple SVR fusion by bagging. Firstly, the main factors that influence sizing percentage are obtained by analyzing the sizing process. Then the basic SVR soft sensor models are built by different kernel functions, different loss functions and different parameters. Finally, the different basic SVR models are integrated by bagging. The basic SVR can learn from each other by this way. The new sizing percentage soft sensor model is established. The practical production data are used to test the new soft sensor model. And the traditional soft senor methods based on single BP neural network and single SVR are used to compare. The results demonstrate that the new method has the best performance. The accuracy of new soft sensor can meet the needs of practical production.

Key words: sizing percentage, sizing process, soft measuremtent, Bagging, support vector regression

[1] 张灵婕 缪旭红 万爱兰 蒋高明 陈方芳. 上浆前处理剂对经编用棉纱性能的影响[J]. 纺织学报, 2018, 39(04): 82-86.
[2] 武海良 沈艳琴 姚一军 毛宁涛. 低上浆率织造用浆料的配方设计机制[J]. 纺织学报, 2016, 37(12): 60-64.
[3] 谷有众 高卫东 卢雨正 刘建立 杨瑞华. 应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测[J]. 纺织学报, 2016, 37(07): 142-148.
[4] 谢洋, 金福江, 汤仪平. 橡毯预缩机预缩率软测量模型[J]. 纺织学报, 2012, 33(8): 130-133.
[5] 赵其明;陆华程. 预湿上浆工艺浆纱上浆率的预测[J]. 纺织学报, 2008, 29(10): 39-42.
[6] 杨艳菲;崔世忠;郑天勇;禹建丽. BP神经网络预测上浆率[J]. 纺织学报, 2006, 27(10): 57-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!