纺织学报 ›› 2014, Vol. 35 ›› Issue (8): 21-0.

• 纤维材料 • 上一篇    下一篇

亚麻纤维线密度与直径回归相关模型的构建及验证

  

  1. 中国农业科学院麻类研究所
  • 收稿日期:2013-07-15 修回日期:2014-04-18 出版日期:2014-08-15 发布日期:2014-08-15
  • 通讯作者: 杨喜爱 E-mail:mzmm74@yahoo.com.cn
  • 基金资助:

    农业部农业行业标准项目

Construction and confirmation of regression models of flax fiber line density and diameter

  • Received:2013-07-15 Revised:2014-04-18 Online:2014-08-15 Published:2014-08-15

摘要: 为建立一个快速有效的亚麻纤维细度的测试方法,采用传统的中段称重法获得纤维细度(Nm),用直径显微图像仪测试出亚麻纤维直径(d)。统计软件SPSS 3.0拟合分析纤维直径和纤维细度的相关性,获得6个回归模型。优化后的回归方程为Nm=159+2.505×105/d2,相关系数 r=0.801**,表明亚麻纤维直径和纤维细度间存在着比较好的相关性。F-检验和t-检验证明该方法与传统中段称重法差异不显著。实验室间验证结果表明该方法具有比较好的精密度、重现性和再现性。因此通过显微图像仪测试纤维直径,再经过存储在主机上回归方程的换算,同步实现亚麻纤维细度的自动化快速检测。

关键词: 亚麻纤维线细密度, 纤维直径, 显微图像仪, 回归模型, 优化与验证

Abstract: Abstract In order to build up a rapid and efficient method to measure the commonly used parameter of flax fiber fineness(Nm), the application of microscopic image technique was proposed for this research. Flax fiber fineness was measured with traditional gravimetric method, and flax fiber diameter(d)was scanned and measured on a microscopic image instrument. Both data of fiber fineness and fiber diameter were calculated and analyzed by statistic software SPSS 3.0, 6 regression equations about the correlation of flax fiber fineness and fiber diameter were modeled. The suitable regression equation was Nm=159+2.505×105/d2(Correlation coefficient r=0.801**), there was a good correlation between fiber diameter and fiber fineness. Thus flax fiber fineness could be, nearly at the same time calculated based on this equation once fiber diameter was measured automatically on machine. F-test and t-test results showed that there was no significant difference between traditional gravimetric method and this new method. There were also good precision, repeatability and reproducibility in confirmatory experiments among 4 measuring institutions where this new method was put into use.

Key words: foax fiber line density, fiber diameter, microscopic image technique, regression model, optimization and confirmation

[1] 谢胜 韩万里. 熔喷过程中纤维直径再次变大的模拟与验证[J]. 纺织学报, 2017, 38(04): 17-21.
[2] 梁超 胡春艳 阎克路 朱晓敏 THOMAS Helga. 影响熔融静电纺聚丙烯纤维直径的工艺因素[J]. 纺织学报, 2016, 37(11): 14-18.
[3] 庄昌明 孟晓华 曾泳春. 静电纺丝接收装置的大小对电场分布和纤维接收的影响[J]. 纺织学报, 2014, 35(6): 7-0.
[4] 邹平;吴世刚;孙宁. 原型坦翻领底领宽数学模型的建立[J]. 纺织学报, 2010, 31(5): 102-106.
[5] 唐虹.;张渭源. 基于面料性能的半紧身裙造型特征及预测模型[J]. 纺织学报, 2008, 29(6): 88-91.
[6] 李志民;孙亚峰;王新厚. 静电纺丝拉伸模型与实验[J]. 纺织学报, 2008, 29(10): 5-8.
[7] 潘志娟;徐安长;夏艳杰. 聚酰胺含量对静电纺丝素纤维结构和性能的影响[J]. 纺织学报, 2007, 28(6): 23-27.
[8] 鲍韡韡;张幼珠;尹桂波;虞青亮. 丝素与明胶共混静电纺丝[J]. 纺织学报, 2007, 28(3): 1-4.
[9] 王莹;陈雁. 冬季女外套款式感性研究和应用[J]. 纺织学报, 2007, 28(11): 97-100.
[10] 徐枫;张浩;郑嵘. 照相测量中胸围拟合的回归分析[J]. 纺织学报, 2006, 27(8): 49-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!