纺织学报 ›› 2014, Vol. 35 ›› Issue (11): 35-0.

• 纺织工程 • 上一篇    下一篇

基于BP神经网络的原棉短纤指数预测模型

  

  1. 塔里木大学机械电气化工程学院
  • 收稿日期:2013-11-25 修回日期:2014-04-25 出版日期:2014-11-15 发布日期:2014-11-20
  • 通讯作者: 陈晓川 E-mail:cimspaper@yeah.net
  • 基金资助:

    新疆生产建设兵团支疆计划项目;国家质检总局项目;塔里木大学校长基金自然科学项目

Raw cotton short fiber index prediction mwdel based on BP veural network

  • Received:2013-11-25 Revised:2014-04-25 Online:2014-11-15 Published:2014-11-20

摘要: 为了对脱籽后原棉的短纤指数进行预测,采用BP神经网络预测法,设计了原棉短纤指数预测的BP神经网络模型。以南疆地区原棉为对象,选择籽棉回潮率和轧花速度2个因素作为BP神经网络模型的输入参数,建立了原棉短纤指数与这些参数的相关关系和BP神经网络模型,对原棉短纤指数预测分析。结果表明:BP神经网络模型具有极强的非线性逼近功能,能较好表达原棉短纤指数与主控因素之间的非线性关系,预测结果与实测值之间误差小,测试样本的网络输出与网络目标的相关系数达0.96357,模型预测效果较佳。

Abstract: In order to predict short fiber index of raw cotton,a BP neural networks model was designed on the basis of prediction method of the BP neural networks. Based on the raw cotton in southern Xinjiang,taking the seed cotton moisture regain and the rotational speed of saw cylinder as the basic characteristic quantity of BP neural networks models,the correlation between the short fiber index of raw cotton and the input parameters and the BP neural networks prediction model were proposed for prediction of the short fiber content. The results show that the BP neural networks model has strong ability for nonlinear approach which can actually reflect the nonlinear relationship between the short fiber index of raw cotton and main controlling factors. The small errors between the prediction values and measured values were achieved. The R-square of regression function between output and target of neural networks model for testing sample is 0.96357.

中图分类号: 

  • TS102.2
[1] 曹秋玲 朱苏康. 营盘出土籽棉的鉴定与古代西域的棉花利用[J]. 纺织学报, 2013, 34(12): 16-0.
[2] 李长龙 刘琼 孙瑞霞 王宗乾. 青桐韧皮化学脱胶与纤维性能分析[J]. 纺织学报, 2013, 34(12): 8-0.
[3] 曹秋玲, 朱苏康. 营盘出土棉纤维和现代棉纤维的对比分析[J]. 纺织学报, 2012, 33(8): 30-34.
[4] 赵静然, 郁崇文. 用WIRA气流仪测试苎麻纤维细度[J]. 纺织学报, 2012, 33(7): 15-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!