纺织学报 ›› 2016, Vol. 37 ›› Issue (3): 31-34.

• 纺织工程 • 上一篇    下一篇

湿纺亚麻纱的生化联合处理工艺

  

  • 收稿日期:2014-12-22 修回日期:2015-07-21 出版日期:2016-03-15 发布日期:2016-03-16

Biochemistry treatment on wet spinning flax yarn

  • Received:2014-12-22 Revised:2015-07-21 Online:2016-03-15 Published:2016-03-16

摘要:

为解决湿纺亚麻纱条干均匀度差,成纱粗硬,织造易断头等问题,探讨了一种湿纺纱的生化联合处理工艺,即先通过NAOH/尿素溶液改性,再经漆酶/酸性木聚糖酶复合处理工序,研究其对亚麻纱线性能的影响。结果表明,在NAOH/尿素溶液改性中,最优工艺参数即NAOH用量为6.5%(o.w.f),复合酶处理中漆酶用量为4.0%(o.w.f),酸性木聚糖酶用量4.5%(o.w.f),处理温度50℃,处理时间90min下,处理后的亚麻纱较原纱条干CV值提升41%,毛效提升134%,断裂伸长率提升95.8%。改善了亚麻纱的物理机械性能,为亚麻纱的织造工序创造一定的条件。

关键词: 亚麻纱, 漆酶, 酸性木聚糖酶, 生化联合处理

Abstract:

The flax yarn spun with wet spinning process is poor in evenness, high in stiffness, and easy to be broken during weaving. In order to solve the problems, a biochemistry treatment peocess was used to discuss the influence on the properties of flax yarns. The yarns were first modified with NaOH/urea solution, and then treated withd laccase/ acidxylanase compound enzyme. The results indicate the optimum technology parameters as followed.  The dosage of NaOH is 6.5%(o.w.f) in the modification of NaOH/urea solution, the dosage of compound enzyme are separate laccase 4.0%(o.w.f) and acid xylanase 4.5%(o.w.f) in compound enzyme process, the treatment temperature is 50℃, and the time is 90 min. Under this biochemical treatment process, the yarn evenness CV increases 41%, capillary effect increases 134%, and the elongation at break increases 95.8%. The physical and mechanical properties improve are improved significantly. It can create a certain condition for the weaving of flax yarns.

Key words: flax yarn, laccase, acid xylanase, biochemical treatment

[1] 贾维妮 范雪荣 王强. 漆酶对蚕丝织物的生物染色[J]. 纺织学报, 2013, 34(12): 66-0.
[2] 张勇兵 张婉 王强 范雪荣 袁久刚 王平 章金芳. 漆酶处理对黄麻纤维木质素结构的影响[J]. 纺织学报, 2013, 34(11): 94-0.
[3] 华欣春 陈丽丽 毕云枫 沈明浩. Coprinopsis cinerea 漆酶基因的克隆及其在毕赤酵母中的表达[J]. 纺织学报, 2012, 33(10): 79-83.
[4] 宦庆松;范雪荣;王强;王平;崔莉 . 聚丙烯纤维光接枝改性及其在漆酶固定化中的应用[J]. 纺织学报, 2009, 30(10): 80-84.
[5] 李红霞;周琼;黄故. 亚麻纬编针织物及其拉伸性能[J]. 纺织学报, 2007, 28(7): 42-46.
[6] 楼利琴;许平辉;陈波;任伟伟. 竹原纤维酶处理的纤细化效果[J]. 纺织学报, 2007, 28(5): 84-88.
[7] 高恩丽;张树江;夏黎明;余为民. 云芝漆酶在牛仔布生物整理中的应用[J]. 纺织学报, 2007, 28(4): 73-75.
[8] 李锦华. 氧漂活化剂ABO在亚麻纱线氧漂中的应用[J]. 纺织学报, 2006, 27(12): 96-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘树琪;王绍平;李学堃. 刻划抽样风险的一种新概念和方法[J]. 纺织学报, 1989, 10(06): 41 -42 .
[2] 李丽;范雪荣;王强. 高取代CMC用作活性染料印花糊料[J]. 纺织学报, 2006, 27(11): 75 -78 .
[3] 顾韵芬;张姝. 金代女真族服饰文化的涵化[J]. 纺织学报, 2009, 30(01): 102 -106 .
[4] 李士允. dBase-Ⅲ微机数据库管理系统在服装算料中的应用[J]. 纺织学报, 1987, 8(04): 54 -56 .
[5] 黄立新. 细旦高密涤纶短纤织物的上浆工艺研究[J]. 纺织学报, 2003, 24(04): 77 -78 .
[6] 刘冠彬. 胸部造型数值化的研究与实践[J]. 纺织学报, 2004, 25(03): 59 -60 .
[7] 刘羿君;孙丽平;封云芳;赵志毅;沈建琴;金晓航. 计算机智能技术在真丝绸连缸染色中的应用[J]. 纺织学报, 2004, 25(04): 96 -97 .
[8] 靳向煜;吴海波. 非织造布在医疗卫生领域的应用和发展[J]. 纺织学报, 1996, 17(05): 39 -42 .
[9] 秦益民. 制作医用敷料的羧甲基纤维素纤维[J]. 纺织学报, 2006, 27(7): 97 -99 .
[10] 李红燕;吴宣润;张渭源;杨凯. 热防护服织物性能与综合防护能力的关系[J]. 纺织学报, 2008, 29(9): 59 -61 .