纺织学报 ›› 2016, Vol. 37 ›› Issue (05): 17-22.

• 纤维材料 • 上一篇    下一篇

梯度结构耐高温纤维过滤材料的结构与性能

  

  • 收稿日期:2015-04-23 修回日期:2015-12-17 出版日期:2016-05-15 发布日期:2016-05-10

Stucture and performance of high temperature resistant fibrous filters with gradient structure

  • Received:2015-04-23 Revised:2015-12-17 Online:2016-05-15 Published:2016-05-10

摘要:

为探究梯度结构纤维过滤材料的制备工艺对过滤材料结构、性能的影响,制备了聚苯硫醚纤维(PPS)-聚四氟乙烯超细纤维(PTFE)滤料,分析了制备工艺(超细纤维层克重和水针能量)对结构和过滤性能的影响,并建立了对应的二次方模型。结果表明:超细纤维层的克重对孔径大小和过滤效率均有显著的影响,随着超细纤维层克重从49±3.8g/m2增大到181±12.5g/m2,试样的模态孔径从20.22μm降低到12.52μm,而对2.05μm颗粒物的过滤效率从63.41%增大到91.87%。水针能量在3738KJ/Kg~8755KJ/Kg范围内,过滤效率和过滤阻力均随着水针能量的增大而增大。建立的二次方模型的置信度高,表明模型适用于梯度结构的耐高温纤维过滤材料的工艺设计。

关键词: 非织造过滤材料, 耐高温纤维, 梯度结构, 工艺设计, 二次方模型

Abstract:

In order to study effect of process on structure characteristics and filtration performance, the samples of gradient filters consist with PPS fibers and PTFE microfibers were made. The relationships between the process (gran weight of microfiber layers and the hydroentangling energy) and structure characteristics were discussed, and the quadratic models also have been established. The results show that the gram weight of PTFE microfiber layers has a significant influence on structure and filtration performance of the samples, the samples has model pores size is 20.22μm and the filtration efficiency is 63.41% for 2.05μm when the PTFE microfiber layers gram weight is 49±3.8g/m2. As the PTFE microfiber layers gram weight increases to 181±12.5g/m2, the model pores size reduced to 12.52μm, and filtering efficiency of the 2.05μm particle increases to 91.87%. In addition, the results also found that, the filtration efficiency and filtration resistance increased with the hydroentangling energy in the range of 3738kJ/Kg~8755kJ/Kg. Furthermore, Quadratic models have high degree of confidence intervals, which means that the models is good for the process design of the high temperature resistant fibrous filters with a graded structure.

Key words: nonwoven filter, high temperature resistant fiber, gradient structure, process disign, quadratic models

中图分类号: 

  • TS176
[1] 朱金铭 钱建华 曹晨 曹原. 聚醚砜非织造布复合膜的空气过滤性能[J]. 纺织学报, 2018, 39(07): 55-62.
[2] 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61.
[3] 陶建勤 余晓华 张宏伟 刘娜. 毛纱捻缩率的预测模型[J]. 纺织学报, 2016, 37(05): 32-36.
[4] 张玉红 陈绍芳. 应用母型法的无缝内衣工艺样板设计[J]. 纺织学报, 2015, 36(07): 100-103.
[5] 陈洁 秦晓 王建明. 局部管状横机织物的开发[J]. 纺织学报, 2013, 34(9): 39-0.
[6] 唐虹.;张渭源;黄晓梅. 机织面料吸湿快干梯度结构的构建[J]. 纺织学报, 2006, 27(8): 41-44.
[7] 项前;吕志军;杨建国. 纺织品智能工艺设计与质量预测系统[J]. 纺织学报, 2005, 26(3): 118-120.
[8] 周罗庆. 机织组织的开口运动记录法图解工艺设计[J]. 纺织学报, 2004, 25(04): 92-93.
[9] 冯伟一;尹玲. 计算机辅助服装工艺设计的研究[J]. 纺织学报, 2004, 25(01): 104-105.
[10] 孙锋. 论纯棉1+1罗纹织物的工艺设计[J]. 纺织学报, 2003, 24(01): 41-42.
[11] 徐国平. UI-305s整经机的工艺设计[J]. 纺织学报, 2002, 23(05): 53-54.
[12] 张毅强;杨咏梅;魏保平;贾立锋. 细纱机竹节纱的生产技术探索[J]. 纺织学报, 2001, 22(04): 30-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周玉麟. 上海市纺织系统科技情报工作会议[J]. 纺织学报, 1987, 8(10): 39 .
[2] 储咏梅;王琪;王国和. 竹浆纤维纯纺及混纺纱线弹性测试与分析[J]. 纺织学报, 2006, 27(2): 68 -70 .
[3] 戴瑾瑾;朱泉;张洵栓;何瑾馨;张宝珍;陆志勋;蔡幼明;吴健雄. CHP-91袜用防蚊整理剂及其应用[J]. 纺织学报, 1992, 13(07): 31 -32 .
[4] 郭秉臣;董振礼;高殿斌. 兔毛织物的掉毛探讨[J]. 纺织学报, 1992, 13(07): 33 -34 .
[5] 张治国;尹红;陈志荣. 纤维后整理用抗静电剂研究进展[J]. 纺织学报, 2004, 25(03): 121 -122 .
[6] 胡恒亮;穆祥祺;贾景农;边栋材. 棉纤维结晶度和横向晶粒尺寸的X射线衍射法测定[J]. 纺织学报, 1984, 5(07): 42 -45 .
[7] 何凤;白玉林. 室内配套纺织装饰品及其发展[J]. 纺织学报, 1986, 7(04): 57 -59 .
[8] 张亚莹;褚益清;张之兰. 闪色织物及其开发[J]. 纺织学报, 1992, 13(07): 27 -30 .
[9] 沈萌红;周震宇. 基于ARM单片机的络丝机控制系统的研制[J]. 纺织学报, 2004, 25(03): 110 -111 .
[10] 胡丹婷;汪佩霞. 全球价值链下的中国服装产业升级[J]. 纺织学报, 2007, 28(12): 131 -134 .