纺织学报 ›› 2016, Vol. 37 ›› Issue (06): 142-154.

• 管理与信息化 • 上一篇    下一篇

蕾丝花边的改进型纹理特征检索方法

  

  • 收稿日期:2015-06-12 修回日期:2016-01-06 出版日期:2016-06-15 发布日期:2016-06-17

Lace retrieval method based on improved texture feature

  • Received:2015-06-12 Revised:2016-01-06 Online:2016-06-15 Published:2016-06-17

摘要:

针对传统的蕾丝花边检索主要依赖于人的视觉检测及文本检索,存在信息不稳定、效率低、检索效果不可靠的现象,提出了一种基于层次匹配下多特征融合的蕾丝花边检索方法。通过运用图案纹理特征标识图像,首先分别用灰度共生矩阵、灰度梯度共生矩阵、局部二进制算子提取纹理特征进行匹配。然后将3种提取纹理特征方法分别结合几何特征、不变矩特征量进行逐层匹配。最后将层次匹配下各个纹理特征进行融合,弥补了单个匹配方法的不足,同时在蕾丝花边库中验证所用检索方法的正确率。分析结果表明,该方法优于任意单个的蕾丝花边匹配方法,能较好地实现蕾丝花边检索,有效地提高图案检索的可靠度和准确率。

关键词: 图像检索, 蕾丝花边, 纹理特征匹配, 层次匹配, 特征融合, 特征提取

Abstract:

Traditional lace pattern retrieval mainly relies on the manual retrieval and text retrieval, while the text retrieval marks image by language description which leads to the unstable annotation information, low efficiency and unreliable retrieval results. This work marked image by texture pattern feature. A lace retrieval algorithm containing classification selection and classifier fusion through hierarchy match was proposed, and it made up the deficiency of the single matching method. Three image-based methods, such as gray level co-occurrence matrix, gray level-gradient co-occurrence matrix, local binary pattern operator, were fused by means of geometry features and invariant moments for a match-by-level respectively. Experimental results indicate that the performance of fusion-based method is better than any single method and it can achieve the lace retrieval promisingly as improving the reliability and accuracy of image retrieval effectively.

中图分类号: 

  • TS 181.8
[1] 向忠 何旋 钱淼 胡旭东. 基于边缘和颜色特征的织物印花花型检索[J]. 纺织学报, 2018, 39(05): 137-143.
[2] 董蓉 李勃 徐晨. 应用积分图的织物瑕疵检测快速算法[J]. 纺织学报, 2016, 37(11): 141-147.
[3] 黎聪 闫学娜 曾祥忠 梁猛 张莹. 应用一维傅里叶变换的剖幅区自动识别与定位[J]. 纺织学报, 2016, 37(01): 147-151.
[4] 杜玉红 王加富 蒋秀明 周国庆 罗永恒. 应用聚类统计分析的棉花异纤图形检测算法[J]. 纺织学报, 2015, 36(03): 135-0.
[5] 管声启 高照元 吴宁 徐帅华. 基于视觉显著性的平纹织物疵点检测[J]. 纺织学报, 2014, 35(4): 56-0.
[6] 项明 姚雪存 崔振东 华铨平. 利用相关反馈技术和形状特征的服装图像检索算法[J]. 纺织学报, 2014, 35(2): 94-0.
[7] 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4): 137-142.
[8] 杨晓波. 基于自适应离散小波变换的混合特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(1): 133-137.
[9] 杨晓波. 基于人工神经网络的织物疵点聚类分析[J]. 纺织学报, 2011, 32(9): 29-33.
[10] 刘素一;夏蕾. 基于元胞自动机的织物图像拼接[J]. 纺织学报, 2011, 32(1): 29-33.
[11] 蒋高平;钟跃崎;王荣武. 基于谱线特征的羊绒与羊毛的鉴别[J]. 纺织学报, 2010, 31(4): 15-19.
[12] 罗一平;汪亚明;周平;许建龙. 配光与照明对织物疵点信号特征值的影响[J]. 纺织学报, 2007, 28(5): 66-69.
[13] 李晓久;刘皓. KFDA在领口质量评价系统中的应用[J]. 纺织学报, 2007, 28(3): 76-78.
[14] 周平.;汪亚明;朱森勇. 时-空域多特征证据学习与增强的印染疵点在线检测[J]. 纺织学报, 2006, 27(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!