纺织学报 ›› 2016, Vol. 37 ›› Issue (06): 32-35.

• 纺织工程 • 上一篇    下一篇

纤维力学性能对自捻纱线自捻程度的影响

  

  • 收稿日期:2015-02-09 修回日期:2016-03-02 出版日期:2016-06-15 发布日期:2016-06-17

Effect of fiber mechanical properties on twisting degree of self-twist yarn

  • Received:2015-02-09 Revised:2016-03-02 Online:2016-06-15 Published:2016-06-17

摘要:

为研究纤维力学性能对自捻纱线自捻程度的影响,根据自捻形成过程的总应变能守恒推导出自捻捻回角和纤维抗弯刚度、扭转刚度的关系。结果分析表明:纤维抗弯刚度越大,自捻纱线的自捻捻回角越小;纤维扭转刚度越大,则自捻纱线的自捻捻回角越大;自捻捻回角的大小和纤维的扭转刚度和抗弯刚度之比成正比,即随着纤维扭转刚度和抗弯刚度之比的增大,自捻捻回角增大,所加自捻捻回数增多。通过对苎麻、涤纶、腈纶、羊毛 4 种纤维所纺的自捻纱线的半周期捻回数进行测试,验证了上述关系并得出结论:羊毛和腈纶纺纱时所得自捻捻回数较多,较适合采用自捻纺纱方式进行纺纱;而涤纶和苎麻所加自捻捻回数较少,不太适合采用自捻纺纱方式开发纺织品。

关键词: 自捻, 总应变能, 捻回角, 抗弯刚度, 扭转刚度

Abstract:

In order to study the effect of fiber mechanical properties on twisting degree of self twist yarn, and the relationship between the twist angle and fiber bending stiffness, torsional stiffness is derived from the conservation of total strain energy during the process of self-twist spinning. The formula shows that the larger bending stiffness has the smaller twist angle and the bigger torsional stiffness has the larger twist angle. So the size of the twist angle is proportional to the radio of fiber torsional stiffness and bending stiffness, namely with the ratio of fiber torsional stiffness and bending stiffness raises, twist angle increases, and the number of the self-twist twists is greater. By testing the number of the self-twist yarn twists respectively spun from ramie, polyester, acrylic and wool, the above relationship is verified and the conclusion can be drawn as: wool and acrylic are more suitable for self-twist yarn by self-twist spinning with greater self-twist number, but polyester and ramie are not suitable for textile developmtent by self-twist spinning with smaller self-twists number.

Key words: self-twist, titak straub energy, tist angle, bending stiffness, torsional stiffness

中图分类号: 

  • TS134.7
[1] 韩晨晨 程隆棣 高卫东 薛元 薛文良 杨瑞华 . 传统型与自捻型喷气涡流纺的对比[J]. 纺织学报, 2018, 39(01): 25-31.
[2] 崔红 高秀丽 张伟 吕立斌. 自捻纱的拉伸力学性能[J]. 纺织学报, 2017, 38(03): 44-48.
[3] 黄伟 汪军. 双股线几何强力模型的建立与其影响因素[J]. 纺织学报, 2015, 36(02): 25-0.
[4] 崔红, 肖志永, 郁崇文. 自捻纱的捻度分布特征分析[J]. 纺织学报, 2012, 33(8): 40-45.
[5] 姜岩, 姜丽, 王善元. 长丝变形纱成纱熵变对抗弯刚度的影响[J]. 纺织学报, 2012, 33(3): 18-21.
[6] 张金秋;张建春;王善元. 柔软整理对大麻纤维性能的影响[J]. 纺织学报, 2010, 31(4): 98-102.
[7] 李哲. 面料性能与缩褶吃量的相关性[J]. 纺织学报, 2009, 30(9): 98-101.
[8] 张金秋;张建春. 精细化加工对大麻纤维理化性能的影响[J]. 纺织学报, 2009, 30(11): 81-87.
[9] 姜岩;张大庆;杨梅;王善元. 长丝变形成纱缠结结构研究[J]. 纺织学报, 2009, 30(10): 23-26.
[10] 李旦;俞谱. 纤维端尺寸对单纤维弯曲性能的影响[J]. 纺织学报, 2008, 29(9): 23-25.
[11] 梁建勋;于伟东;严灏景. 基于悬挂造型求纱线抗弯刚度的探讨[J]. 纺织学报, 2007, 28(7): 22-24.
[12] 徐英莲;祝成炎. 家蚕粗纤度真丝针织产品的研究与开发[J]. 纺织学报, 2003, 24(03): 73-74.
[13] 张建春;施楣梧;尹继亮;孙润军. Lyocell纤维的力学性能研究[J]. 纺织学报, 2000, 21(02): 7-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!