纺织学报 ›› 2016, Vol. 37 ›› Issue (11): 1-7.

• 纤维材料 •    下一篇

聚酯/聚酰胺共聚纤维的结构及其理化性能

  

  • 收稿日期:2015-11-05 修回日期:2016-04-19 出版日期:2016-11-15 发布日期:2016-11-23

Structure and physicochemical properties of polyester/polyamide copolymer fiber

  • Received:2015-11-05 Revised:2016-04-19 Online:2016-11-15 Published:2016-11-23

摘要:

为探究聚酯 ∕ 聚酰胺共聚纤维的结构和性能,采用傅里叶红外光谱、X 射线衍射、差示扫描量热等方法对其结构和热性能进行了研究,同时考察了纤维对常见酸、碱、氧化剂、还原剂的耐受性能。结果表明:该纤维由聚酯和聚酰胺 2 种组分构成,结晶度为46.95%,玻璃化转变温度、结晶温度和熔融温度分别为70、150、233℃,具有较好的热稳定性;纤维对氢氧化钠的耐受性能较差,在氢氧化钠质量浓度为 80g ∕ L,温度为90 ℃,处理 60min 的条件下,纤维减量率高达97%;纤维对碳酸钠、盐酸、硫酸、过氧化氢、保险粉表现出较强的耐受性,但对硝酸的耐受性较差。

关键词: 聚酯纤维, 聚酯 ∕ 聚酰胺共聚纤维, 理化性能, 断裂强度, 减量率

Abstract:

To investigate the structure and properties of polyester/polymer (PET-A) fiber, the structure and thermal stability of PET-A fiber were studied by means of Fourier transform infrared spectroscopy (FT-IR) , X-ray diffraction (XRD) and differential scanning calorimetry (DSC). At the same time, fiber’s tolerance under different conditions of alkali、acid、oxidizing agents and reducing agents were analyzed. Result shows that PET-A fiber is composed of polyester and polyamide two components and its crystallinity is 46.95% . The thermal stability of PET-A fiber is better, and the glass transition temperature, crystallization temperature and melting temperature are 70℃、150℃ and 233℃, respectively. The tolerance of PET-A fiber in sodium hyddroxide solution is poor and the weight loss rate of fiber more than 97% under the conditions of NaOH 80g/L, 90℃ and 60min. But PET-A fiber has better tolerance in sodium carbonate solution, hydrochloric acid, sulfuric acid, hydrogen peroxide and sodium dithionite solution. However it has poor tolerance in nitric aced solution.

Key words: polyester fiber, polyeser/ polyamide copolymer fiber, physicochemical property, tensile strength, weight loss rate

[1] 韦树琛 丁欣 李文霞 王华平 张朔. 废旧聚酯纤维制品近红外定量分析模型的建立及验证[J]. 纺织学报, 2018, 39(07): 63-68.
[2] 刘昀庭 张红霞 贺荣 祝成炎 王浙峰 徐青艺. 导水型再生涤纶织物的制备及其性能[J]. 纺织学报, 2016, 37(4): 96-0.
[3] 杜兆芳 张利玲 许云辉 董丹丹. 氧化竹浆纤维的丝素蛋白改性工艺研究[J]. 纺织学报, 2016, 37(08): 12-15.
[4] 王维明 虞波 陈缘晴 王中正. 改性聚酯纤维用防活性染料沾色剂的制备及其适用性[J]. 纺织学报, 2015, 36(06): 72-0.
[5] 杨菲 徐山青. 豆腐渣/淀粉复合膜的制备及其性能[J]. 纺织学报, 2014, 35(6): 30-0.
[6] 李龙 蒋芳. 山羊绒纤维高锰酸钾防缩工艺[J]. 纺织学报, 2013, 34(6): 79-82.
[7] 方孝芬 王朝生. 新型阻燃亲水聚酯纤维的制备及其性能[J]. 纺织学报, 2013, 34(2): 18-22.
[8] 王燕萍, 夏于旻, 甘海啸, 朱卫彪, 钦维民, 王依民. 芳香族共聚酯的固相聚合和熔融纺丝[J]. 纺织学报, 2012, 33(6): 111-115.
[9] 阮芳涛, 金欣, 韦毅俊, 王闻宇, 郭成越, 肖长发, 谢淳. 碱处理∕吡咯沉积制备聚酯导电纤维[J]. 纺织学报, 2012, 33(2): 1-5.
[10] 陆鑫 张姝 顾韵芬. 针织面料性能对服装边口缝制工艺的影响[J]. 纺织学报, 2012, 33(11): 97-101.
[11] 张辉 张天骄 包建文. 高压静电纺丝法制备聚芳醚酮超细纤维非织造布[J]. 纺织学报, 2011, 32(7): 23-28.
[12] 孙玉;郑帼;周岚. 改性共聚酯纤维的染色性能[J]. 纺织学报, 2011, 32(3): 77-81.
[13] 丁飞飞;汪澜;林俊雄. 低熔点皮芯复合纤维分散染料染色机制[J]. 纺织学报, 2011, 32(1): 67-72.
[14] 周颖;许建梅;白伦;韦进吉;许红燕. 生丝单丝强伸力检验中样本容量研究[J]. 纺织学报, 2010, 31(8): 36-40.
[15] 郭占军;陈建勇;郭玉海;张华鹏;唐红艳. 热处理对PTFE牵伸性能的影响[J]. 纺织学报, 2010, 31(6): 21-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!