纺织学报 ›› 2016, Vol. 37 ›› Issue (11): 141-147.

• 管理与信息化 • 上一篇    下一篇

应用积分图的织物瑕疵检测快速算法

  

  • 收稿日期:2015-07-21 修回日期:2016-07-10 出版日期:2016-11-15 发布日期:2016-11-23

Fast fabric defect detection algorithm based on integral image

  • Received:2015-07-21 Revised:2016-07-10 Online:2016-11-15 Published:2016-11-23

摘要:

为解决现有基于图像处理的织物瑕疵检测算法实时性较差、正确率偏低等问题,提出一种包含学习和检测2个阶段的瑕疵检测算法。通过对无瑕疵模板图像的梯度能量特征及其分布特性的学习,自适应获得检测阶段所需的参数。一方面利用积分图原理将任意大小的图像块内的求和运算化简为三次加法运算,快速提取织物图像的梯度能量特征,实现织物瑕疵的实时检测,另一方面利用核函数拟合特征参数分布,结合均值漂移法求解分布峰值获得自适应的瑕疵判定阈值参数,实现织物瑕疵的准确分割。通过实验将本文算法与现有基于局部二值模式特征、小波特征、规则带特征等算法进行对比,针对包含3种纹理6类瑕疵的织物图像数据集的测试结果显示,本文算法平均处理时间为56ms,正确率为97%。

关键词: 织物瑕疵检测, 积分图, 特征提取, 核函数, 均值漂移

Abstract:

The exisiting fabric defect detection methods based on image processing is poor in real-time performance and low in accuracy. In order to solve this problem, an algorithm consisting of two stages of learning and detection was proposed. By means of learning the gradient energy features and their distribution properties of non-defect model images, parameters in the detection stage were obtained automatically. On the one hand, by using integral image theory, summation operation in the image patch with arbitrary size was simplified to three addition operations, and gradient energy features in fabric images were extracted very quickly, so that fabric defects can be detected in real time. On the other hand, kernel functions were used to fit the distribution of feature parameters, mean shift method was used to solve the peak value in the distribution, and an adaptive threshold was obtained, so that fabric defect can be segmented precisely. In the experiments, the proposed algorithm was compared with the other three methods, respectively, based on local binary pattern features, wavelet features and regular band features. Tests on fabric image datasets including three kinds of textures and six kinds of defects show that the proposed method has an average running time 56 ms and the accuracy rate is 97%.

Key words: fabric defect detection, integral image, feature extraction, kernel function, mean shift

[1] 邢乐 张杰 梁惠娥 李忠健 刘姣姣. 传统服饰云肩实物图像主色的智能检测[J]. 纺织学报, 2017, 38(11): 110-115.
[2] 曹霞 李岳阳 罗海驰 蒋高明 丛洪莲. 蕾丝花边的改进型纹理特征检索方法[J]. 纺织学报, 2016, 37(06): 142-154.
[3] 黎聪 闫学娜 曾祥忠 梁猛 张莹. 应用一维傅里叶变换的剖幅区自动识别与定位[J]. 纺织学报, 2016, 37(01): 147-151.
[4] 杜玉红 王加富 蒋秀明 周国庆 罗永恒. 应用聚类统计分析的棉花异纤图形检测算法[J]. 纺织学报, 2015, 36(03): 135-0.
[5] 管声启 高照元 吴宁 徐帅华. 基于视觉显著性的平纹织物疵点检测[J]. 纺织学报, 2014, 35(4): 56-0.
[6] 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4): 137-142.
[7] 杨晓波. 基于自适应离散小波变换的混合特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(1): 133-137.
[8] 杨晓波. 基于人工神经网络的织物疵点聚类分析[J]. 纺织学报, 2011, 32(9): 29-33.
[9] 刘素一;夏蕾. 基于元胞自动机的织物图像拼接[J]. 纺织学报, 2011, 32(1): 29-33.
[10] 田承泰;步红刚;汪 军;陈 霞;. 基于时间序列分形特征的织物瑕疵检测[J]. 纺织学报, 2010, 31(5): 44-47.
[11] 张秀美;孙永剑;郭亮伟. 面向大批量定制的基于改进的LS-SVM服装需求预测模型[J]. 纺织学报, 2010, 31(5): 141-145.
[12] 蒋高平;钟跃崎;王荣武. 基于谱线特征的羊绒与羊毛的鉴别[J]. 纺织学报, 2010, 31(4): 15-19.
[13] 罗一平;汪亚明;周平;许建龙. 配光与照明对织物疵点信号特征值的影响[J]. 纺织学报, 2007, 28(5): 66-69.
[14] 李晓久;刘皓. KFDA在领口质量评价系统中的应用[J]. 纺织学报, 2007, 28(3): 76-78.
[15] 周平.;汪亚明;朱森勇. 时-空域多特征证据学习与增强的印染疵点在线检测[J]. 纺织学报, 2006, 27(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!