纺织学报 ›› 2016, Vol. 37 ›› Issue (11): 114-119.

• 服装工程 • 上一篇    下一篇

服装工序相似性标准工时预测

  

  • 收稿日期:2015-10-20 修回日期:2016-07-01 出版日期:2016-11-15 发布日期:2016-11-23

Prediction of garment standard time based on processes similarity

  • Received:2015-10-20 Revised:2016-07-01 Online:2016-11-15 Published:2016-11-23

摘要:

针对多品种、小批量的服装生产特征,在有效利用企业数据信息的基础上,为实现快速准确的工时预测、工时定额,提出基于服装工序相似性的预测工时新方法。将产品按照款式、部件、工序、工时进行划分编码,建立标准工时数据库,实现工时的快速查询。建立影响工序相似性的评价指标模型,借助主成分分析,获取各指标的权重,构建模糊隶属函数计算基准工序与样本工序的相似系数。借助MatLab软件进行曲线拟合,确立标准工时和工序相似系数的函数关系,以此预测工序工时。研究结果发现,13 个工序相似性指标中,工艺内容指标权重最高为0.018,尺寸规格指标权重最低为0.011。通过案例企业实践应用,预测装拉链时间为201s,与秒表测量时间208s 较接近,证实本文方法具有一定的准确性和可行性。

关键词: 标准工时, 隶属函数, 服装工序, 主成分分析

Abstract:

With the multi-specification and small batch manufacturing, in order to achieve fast and accurate time-quota prediction, this study efficient use of enterprise data and proposes a new method based on similarity of processes. The products were encoded depending on styles, components and procedures, and standard time quota database was established to make the work time quick inquiry. This paper established the model of the evaluation indicators for processes similarity, analyzed with principsl component, obtained the weight of each index, and made fuzzy membership functions to calculate the similar coefficients of the benchmark process and sample process. The function relationship between the standard time quotas and the similar coefficients was determine to predict the unknown time by curve fitting with MatLab. The research results show that the thghest index weight is the process (0.0108) , and the lowest index weight is the specification (0.011) . In the case study the predicted time of "zipper" (201s) is close to the actual time by stopwatch (208s) which peoves the high accuracy and feasibility of the method.

Key words: standard time quota, membership function, garment process, principal component analysis

中图分类号: 

  • TS941.63
[1] 张陆佳 林兰天 陈春敏 申炎仃 高琮. 基于主成分分析的纤维拉伸断裂声发射信号识别[J]. 纺织学报, 2018, 39(01): 19-24.
[2] 夏凤勤 毋戈 谢昊洋 钟跃崎. 基于人体纵截面特征曲线的体型分类[J]. 纺织学报, 2017, 38(06): 86-91.
[3] 李东 万贤福 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(05): 122-127.
[4] 万振凯 贡丽英 万莉. 基于损伤指数的三维编织复合材料结构损伤评估[J]. 纺织学报, 2017, 38(05): 69-74.
[5] 苟捷 刘建立 高卫东. 应用主成分分析的原棉可纺性指数构建[J]. 纺织学报, 2015, 36(08): 16-21.
[6] 金关秀 应伟伟 雷新 从明芳 祝成炎. 纺粘非织造布孔隙形状的定量分析[J]. 纺织学报, 2015, 36(08): 56-61.
[7] 夏明 王文玲 张文斌. 人体特征断面形状拟合及围度尺寸预测[J]. 纺织学报, 2014, 35(8): 76-0.
[8] 钟智丽 王玉新. 聚丙烯长丝/芳纶包缠纱捻度的优化[J]. 纺织学报, 2014, 35(6): 40-0.
[9] 耿艳蕾;崔运花;程隆棣;黄淑韵. 不同结构竹浆纤维纱线性能测试及分类[J]. 纺织学报, 2010, 31(4): 35-38.
[10] 刘贵;于伟东.. 主成分分析的BP神经网络在精毛纺粗纱工序中的应用[J]. 纺织学报, 2008, 29(9): 34-37.
[11] 徐松杰. 基于主成分分析法的纺织企业技术改造效果评价[J]. 纺织学报, 2008, 29(7): 128-131.
[12] 李艳梅.;张渭源. 基于灰色模型的服装面料缝纫皱缩预测[J]. 纺织学报, 2008, 29(6): 92-95.
[13] 张毅;薛敏;刘长伴. 纱线综合质量评价系统的建立及其应用探讨[J]. 纺织学报, 2008, 29(11): 31-34.
[14] 王亚;卢雨正;高卫东. 织物柔软度的等级划分[J]. 纺织学报, 2008, 29(11): 44-47.
[15] 王玉秀;李晓久;刘皓. 二维非接触人体测量中体型的模糊聚类分析[J]. 纺织学报, 2007, 28(2): 100-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!