纺织学报 ›› 2017, Vol. 38 ›› Issue (06): 118-123.doi: 10.13475/j.fzxb.20160604106

• 机械与器材 • 上一篇    下一篇

应用机器视觉的织物表面绒毛率测试系统

  

  • 收稿日期:2016-06-16 修回日期:2017-03-20 出版日期:2017-06-15 发布日期:2017-06-16

Fabric surface fluff rate detecting system based on machine vision

  • Received:2016-06-16 Revised:2017-03-20 Online:2017-06-15 Published:2017-06-16

摘要:

目前织物表面绒毛含量大都采用人工方式检测,存在效率低、准确度不高等问题。为此,应用机器视觉和图像处理技术,研制了一套织物表面绒毛率测试系统。介绍了织物表面绒毛率测试原理,包括织物表面绒毛率检测数学模型、检测算法和阈值的确定方法,并介绍了织物表面绒毛率测试系统的软硬件组成。采用该测试系统检测了5种织物的表面绒毛率,并与人工检测结果进行了对比分析。结果表明:该测试系统能够高效地测定织物表面绒毛率,且与人工检测结果呈现高度正相关;系统重复检测偏差范围为1.18%~7.25%,可满足织物表面绒毛率的检测需求。

关键词: 织物表面绒毛率, 机器视觉, 图像分析, 绒毛率测试系统

Abstract:

The fluff content on the surface of fabric is detected by manual method, which is low in efficiency and accuracy. Fro this reason, a set of detecting system of fabric surface fluff rate was developed based on machine vision and image processing technology. The detection principle of the fabric surface fluff rate was introduced including the mathematical model, the detection algorithm and the method for determining threshold value, and introduced hardware and software composition of the fabric surface fluff rate detecting system. The surface fluff rate of five kinds of fabrics was detected by the system, and the results were compared with the artificial test results. The results show that the detecting system can efficiently determine the fluff rate of the fabric surface and has a high pesitive correlation with the artificial test results. The system repeat detection error is between 1.18% and 7.25%, which can meet the fabric surface fluff rate detection needs.

Key words: fabric surface fluff rate, vision machine, image analysis, fluff rate detection system

[1] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[2] 蒋双歌 王蕾 王静 刘建立 高卫东. 织物折皱回复的各向异性表征[J]. 纺织学报, 2016, 37(06): 42-47.
[3] 李文羽 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014, 35(3): 158-0.
[4] 沈菁 刘建立 高卫东. 基于图像分析的洗涤去污等级评定[J]. 纺织学报, 2013, 34(3): 50-54.
[5] 王蕾, 刘建立, 高卫东. 基于机器视觉的织物洗涤后尺寸稳定性评价[J]. 纺织学报, 2012, 33(7): 43-47.
[6] 刘哲. 基于图像分析的织物外观质量综合评价[J]. 纺织学报, 2012, 33(11): 61-65.
[7] 张永春 丁志荣 王善元 初丽辉. 图像检测非织造材料纤维取向的主因素探讨[J]. 纺织学报, 2011, 32(11): 23-27.
[8] 霍铖宇 华强 卢达 范龙保 李新 徐刚. 基于虚拟仪器的针织机械用高速电磁阀测试系统[J]. 纺织学报, 2011, 32(10): 134-0.
[9] 李春雷;崔斌;吴兴宽;杨崇倡;冯培. 基于机器视觉的喷丝头自动化检测方法[J]. 纺织学报, 2010, 31(11): 126-130.
[10] 仲岑然;金春奎. 混纺纱横截面结构参数分析[J]. 纺织学报, 2010, 31(1): 40-43.
[11] 陶晨. 混纺纱截面图像分析中的光斑扩散模型[J]. 纺织学报, 2009, 30(04): 45-49.
[12] 李勇;周颖;尚会超;欧阳诚梓. 基于机器视觉的坯布自动检测技术[J]. 纺织学报, 2007, 28(8): 124-128.
[13] 陈伟伟;陈雁. 服装褶皱效果的评价[J]. 纺织学报, 2007, 28(4): 87-89.
[14] 李文斌;徐卫林;崔卫纲;王鑫. 棉纤维长度测试系统的开发[J]. 纺织学报, 2007, 28(11): 25-28.
[15] 周志宇;刘喜昂;杨东鹤. 机器视觉在蚕茧表面积测量中的应用[J]. 纺织学报, 2006, 27(12): 29-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!